中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (4): 585-590.doi: 10.12307/2022.096

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

三维有限元分析牙种植体孔隙结构设计及生物力学性能

张建国1,陈  晨1,胡凤玲2,黄道宇1,宋  亮2   

  1. 1上海应用技术大学机械工程学院,上海市   201418;2复旦大学附属上海市第五人民医院口腔科,上海市   200240
  • 收稿日期:2021-03-20 修回日期:2021-03-23 接受日期:2021-04-24 出版日期:2022-02-08 发布日期:2021-12-06
  • 通讯作者: 宋亮,硕士,副主任医师,复旦大学附属上海市第五人民医院口腔科,上海市 200240
  • 作者简介:张建国,男,1979年生,汉族,博士,副教授,主要从事图像处理研究。
  • 基金资助:
    上海市自然科学基金(19ZR1455100),项目负责人:张建国;上海市闵行区自然科学研究课题(2019MHZ039),项目负责人:胡凤玲

Design and biomechanical properties of dental implant pore structure based on three-dimensional finite element analysis

Zhang Jianguo1, Chen Chen1, Hu Fengling2, Huang Daoyu1, Song Liang2    

  1. 1School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China; 2Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
  • Received:2021-03-20 Revised:2021-03-23 Accepted:2021-04-24 Online:2022-02-08 Published:2021-12-06
  • Contact: Song Liang, Master, Associate chief physician, Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
  • About author:Zhang Jianguo, MD, Associate professor, School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Supported by:
    the Natural Science Foundation of Shanghai, No. 19ZR1455100 (to ZJG); Natural Science Research Project in Minhang District of Shanghai, No. 2019MHZ039 (to HFL)

摘要:

文题释义:
应力遮蔽:是指两种或两种以上不同弹性模量(刚度)材料共同承受外载荷时,弹性模量较高的材料会承担较多载荷,弹性模量较低的材料会承担较少载荷。由于种植体材料的弹性模量与周围骨组织的弹性模量差距过大,造成种植体上的应力不能有效传递至周围骨组织上,而周围骨组织在应力刺激过小时会发生骨萎缩(骨吸收)。
表面改性:通过涂层技术、喷砂酸蚀处理技术、激光酸蚀处理技术及化学酸蚀处理技术和增加多孔结构等方式,增加种植体表面的粗糙度和减低种植体的弹性模量来提升骨结合效果的方式称为表面改性。文章通过增加多孔结构并改变孔隙结构的方式改变表面特性来提升种植体的生物力学性能。


背景:有研究显示,在设计多孔种植体时可以通过改变孔隙内部单元结构来改变弹性模量,为更好地平衡种植体强度和弹性模量提供新的方法。
目的:通过有限元分析不同微观孔结构牙种植体生物力学性能,阐明不同微观孔结构对周围骨应力和种植体力学性能的影响。
方法:通过CT扫描建立下颌骨模型和3种不同孔隙结构(传统结构孔隙、复合结构孔隙、G7结构孔隙)的牙种植体有限元模型,孔隙率为40%,多孔层厚度为1.2 mm,孔径为0.45 mm,模拟极限合力状态对每个模型施加载荷,采用ANSYS有限元软件运算并分析周围骨应力及种植体的应变。
结果与结论:①当种植体受极限合力,传统结构、复合结构与G7结构牙种植体对周围皮质骨等效应力最大值分别为38.324,56.574,64.694 MPa,对周围松质骨等效应力最大值分别为1.836,10.221,9.439 MPa,种植体等效应力最大值分别为156.38,476.23,457.76 MPa;复合结构种植体的最大周围骨应力在促进骨结合的范围内;②当种植体只受侧向力时,传统结构、复合结构与G7结构牙种植体应变最大值分别为 2.222 9×10-2,1.661 9×10-2,3.210 9×10-2 mm/mm;当种植体只受轴向力时,传统结构、复合结构与G7结构牙种植体应变最大值分别为 2.266 2×10-3,1.844 6×10-3,2.971 5×10-3 mm/mm;说明在受侧向静力载荷和轴向载荷时,复合结构种植体的应变最小,产生的微动小,有助于提高骨结合效果;③结果表明,随多孔种植体内部孔隙单元结构的变化,周围骨应力发生明显变化,种植体力学性能也发生明显变化,种植体表面多孔结构的单元胞体结构形状的改变显著影响弹性模量和种植体的力学性能,复合孔隙结构的牙种植体与传统结构和G7结构相比具有更好的生物力学性能。

https://orcid.org/0000-0002-4651-4803 (张建国) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性;组织工程

关键词: 牙种植体, 有限元分析, 生物力学分析, 微观孔结构, 生物力学性能, 骨应力

Abstract: BACKGROUND: Studies have shown that the elastic modulus can be changed by changing the pore internal unit structure when designing porous implants, providing a new way to better balance implant strength and elastic modulus.
OBJECTIVE: To analyze dental implant biomechanical properties with different micro pore structures by finite element analysis so as to elucidate the effects of different micro pore structures on the surrounding bone stress and implant physical properties.
METHODS: A mandibular model and three finite element models of dental implants with different pore structures (conventional structural pores, composite structural pores, and G7 structural pores) were built by CT scanning with porosity of 40%, the thickness of the porous layer of 1.2 mm, and the pore size of 0.45 mm. The ultimate force state was simulated to apply load to each model, which was operated by ANSYS finite element software and analyzed by surrounding bone stress and strain of the implants.
RESULTS AND CONCLUSION: (1) When implants were subjected to the ultimate force, the maximum values of effector forces such as 38.324, 56.574, 64.694 MPa for conventional structure, composite structure and G7 structure dental implants on the surrounding cortical bone were respectively 1.836, 10.221, 9.439 MPa, and the maximum values of effector forces such as implants were 156.38, 476.23, 457.76 MPa. The maximum surrounding bone stress of the composite structure implant was within the range of promoting osseointegration. (2) When only lateral forces were applied to the implants, the maximum strain values of dental implants placed in the conventional structure, composite structure and G7 structure were 2.222 9×10-2, 1.661 9×10-2, 3.210 9×10-2 mm/mm. When only axial forces were applied to the implants, the maximum strain values of dental implants placed in the conventional structure, composite structure and G7 structure were 2.266 2×10-3, 1.844 6×10-3, 2.971 5×10-3 mm/mm, indicating that when subjected to lateral static load and axial load, the strain of the composite structure implant was smallest and the micro-movement was small, which helped to improve the osseointegration effect. (3) The results showed that the surrounding bone stress changed significantly with the change of pore unit cell structure inside the porous implant, and the mechanical properties of the implant also changed, and the change of unit cell structure shape of the porous structure on the implant surface significantly affected the elastic modulus and the mechanical properties of the implant. Dental implants with a composite pore structure had better biomechanical properties compared with conventional constructs and G7 constructs.

Key words: dental implants, finite element analysis, biomechanical analysis, micro pore structure, biomechanical properties, bone stress

中图分类号: