中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (9): 1362-1366.doi: 10.12307/2022.429

• 骨与关节生物力学Bone and joint biomechanics • 上一篇    下一篇

步态周期中踝关节有限元模型的构建及生物力学分析

白子兴1,曹旭含1,孙承颐2,杨艳军1,陈  思1,温建民1,林新晓1,孙卫东1   

  1. 1中国中医科学院望京医院骨关节二科,北京市   101002;2北京中医药大学,北京市   100029
  • 收稿日期:2021-04-24 修回日期:2021-04-26 接受日期:2021-06-17 出版日期:2022-03-28 发布日期:2021-12-09
  • 通讯作者: 孙卫东,博士,主任医师,中国中医科学院望京医院骨关节二科,北京市 101002
  • 作者简介:白子兴,男,1992年生,中国中医科学院在读博士,主要从事骨与关节相关疾病研究。
  • 基金资助:
    北京自然科学基金项目(7172244),项目负责人:孙卫东;北京市科技计划课题(Z191100006619024),项目负责人:孙卫东

Construction and biomechanical analysis of ankle joint finite element model in gait cycle

Bai Zixing1, Cao Xuhan1, Sun Chengyi2, Yang Yanjun1, Chen Si1, Wen Jianmin1, Lin Xinxiao1, Sun Weidong1   

  1. 1Second Department of Bone and Joint, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 101002, China; 2Beijing University of Chinese Medicine, Beijing 100029, China
  • Received:2021-04-24 Revised:2021-04-26 Accepted:2021-06-17 Online:2022-03-28 Published:2021-12-09
  • Contact: Sun Weidong, MD, Chief physician, Second Department of Bone and Joint, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 101002, China
  • About author:Bai Zixing, Doctoral candidate, Second Department of Bone and Joint, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 101002, China
  • Supported by:
    Natural Science Foundation Project of Beijing, No. 7172244 (to SWD); Science and Technology Project of Beijing, No. Z191100006619024 (to SWD)

摘要:

文题释义:
踝关节:由胫、腓骨下端的关节面与距骨滑车构成。胫骨的下关节面及内、外踝关节面共同形成的“冂”形的关节窝,容纳距骨滑车,由于滑车关节面前宽后窄,当足背屈时,较宽的前部进入窝内,关节稳定;但在跖屈时,滑车较窄的后部进入窝内,踝关节松动且能作侧方运动,容易发生扭伤。
步态周期:步态是人类步行的行为特征,是人类生存的基础,其中步态分析方法已发展成为临床工作中的重要组成部分。行走过程中从一侧足跟着地至该足跟再次着地构成一个步态周期,步态周期包括支撑时相(稳定期约为整个步态周期的62%)和摆动时相(摆动期约为整个周期的38%),其中踝关节跖屈在支撑末期出现峰值,约为20°。

背景:踝关节属于人体最重要的承重关节之一,在行走过程中发挥着重要作用,目前缺少有关踝关节在步态周期中应力的相关研究。
目的:基于有限元法分析步态周期中踝关节的应力大小及区域变化。
方法:首先通过Mimics 16.0软件及Rapidform XOR3 64软件构建踝关节有限元模型;利用此踝关节模型与Anderson构建的胫距下关节面有限元模型的应力及接触面积进行对比,验证模型的有效性;最后通过ABAQUS有限元分析软件,模拟踝关节在步态周期中平衡站立工况及支撑末期工况的应力状态,通过对比相同区域不同工况的应力变化,分析踝关节在步态周期中的作用,探讨踝关节失稳状态下踝关节的应力变化。
结果与结论:①构建的踝关节有限元模型共包括44 551个单元、16 718个节点,并验证了其有效性与合理性;②平衡站立工况下:主要应力集中在距腓前韧带(A、B)、胫距前韧带(C、D)、胫距后韧带近端(F)、胫距关节下表面(H);踝关节最大应力在胫距后韧带近端附着点(F),为10.670 MPa;最小应力在内踝胫骨关节面(J),为2.965 MPa;③支撑末期工况下:主要应力集中在距腓前韧带(A、B)、胫距前韧带(C、D)、胫距关节下表面(H)、外踝距骨关节面(K);踝关节最大应力在胫距前韧带近端(D),为23.00 MPa;最小应力在胫距后韧带近端附着点(F),为3.478 MPa;④提示构建的踝关节有限元模型高度还原了踝关节的力学环境,明确了步态周期中踝关节的应力规律,为临床踝关节相关疾病的诊疗与术后康复提供了思路。

https://orcid.org/0000-0003-3116-7287 (白子兴) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 步态周期, 踝关节, 支撑末期, 有限元, 生物力学

Abstract: BACKGROUND: The ankle joint is one of the most important load-bearing joints in the human body and plays an important role in walking. At present, there is a lack of research on the stress of the ankle joint in the gait cycle.  
OBJECTIVE: To analyze the stress and area changes of the ankle joint during the gait cycle based on the finite element analysis method.
METHODS:  First, an ankle finite element model was constructed with Mimics 16.0 software and Rapidform XOR3 64 software. The stress and contact area of this ankle joint model were compared with Anderson’s finite element model to verify the effectiveness of the model. Finally, ABAQUS finite element analysis software was used to simulate the stress state of the ankle joint during the gait cycle in a balanced standing condition and the pre-swing condition. By comparing the stress changes in different conditions in the same area, the role of the ankle joint in the gait cycle was analyzed to explore the changes in ankle stress under joint instability.  
RESULTS AND CONCLUSION: (1) The ankle joint finite element model constructed in this study included 44 551 units and 16 718 nodes, and verified its validity and rationality. (2) Balanced standing conditions: The main stresses were concentrated in the anterior fibula ligament (A, B), anterior tibiotalar ligament (C, D), the proximal end of the posterior tibial ligament (F), and the lower surface of the tibiotalar joint (H). The maximum stress at the ankle joint was at the proximal attachment point (F) of the posterior tibiofibular ligament, which was 10.670 MPa. The minimum stress was at the medial malleolus tibial articular surface (J), which was 2.965 MPa. (3) The pre-oscillation condition: The main stress was concentrated in the anterior fibula ligament (A, B), tibialis anterior ligament (C, D), inferior surface of the tibiotalar joint (H), and articular surface of the lateral malleolus talus (K). The maximum stress of the ankle joint was at the proximal end of the tibial anterior ligament (D), which was 23.00 MPa. The minimum stress was at the proximal attachment point (F) of the posterior tibial ligament, which was 3.478 MPa. (4) It is concluded that the finite element model of the ankle joint constructed in this study highly restores the mechanical environment of the ankle joint, clarifies the stress law of the ankle joint during the gait cycle, and provides ideas for the diagnosis and treatment of clinical ankle joint-related diseases and postoperative rehabilitation.

Key words: gait cycle, ankle joint, pre-swing, finite element, biomechanics

中图分类号: