[1] SHI GLENN G, WHALEN JOSEPH L, TURNER NORMAN S, et al. Operative approach to adult hallux valgus deformity: principles and techniques.J Am Acad Orthop Surg. 2020;28(10):410-418.
[2] 王正义.足踝外科学[M]. 2版. 北京:人民卫生出版社,2014:278.
[3] 中华医学会骨科学分会足踝外科学组, 中国医师协会骨科医师分会足踝外科工作委员会, 王正义, 等. (踇)外翻外科治疗专家共识[J].中华骨与关节外科杂志,2018,11(2):87-95.
[4] MAO R, GUO J, LUO C, et al. Biomechanical study on surgical fixation methods for minimally invasive treatment of hallux valgus. Med Eng Phys. 2017;46:21-26.
[5] 温建民. 拇外翻诊断与治疗方法选择的探讨[J].中国骨伤,2018, 31(3):199-202.
[6] 白子兴, 李晏乐, 曹旭含, 等. 拇外翻有限元模型:研究进展及未来方向[J].生物医学工程与临床,2019,23(5):607-612.
[7] 吕志宇, 赵义荣, 俞春生, 等. 三维可视化技术在Chevron手术治疗(母)外翻术前规划中的应用探讨[J].中国临床解剖学杂志, 2017,35(1):94-97.
[8] GENG X, SHI J, CHEN W, et al. Impact of first metatarsal shortening on forefoot loading pattern: a finite element model study. BMC Musculoskelet Disord. 2019;20(1):625.
[9] JEUKEN RM, SCHOTANUS MG, KORT NP, et al. Long-term Follow-up of a Randomized Controlled Trial Comparing Scarf to Chevron Osteotomy in Hallux Valgus Correction. Foot Ankle Int. 2016;37(7):687-695.
[10] 彭建光, 王强, 李旗. 外翻患者Scarf截骨术对第一跖骨旋转的影响25例报告[J].中国骨与关节杂志,2018,7(12):933-936.
[11] 霍莉峰, 倪衡建. 数字骨科应用与展望:更精确、个性、直观的未来前景[J].中国组织工程研究,2015,19(9):1457-1462.
[12] WATANABE K, IKEDA Y, SUZUKI D, et al. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet. Clin Biomech (Bristol, Avon). 2017; 42: 65-69.
[13] 金乾坤, 何盛为, 何飞熊, 等. 足踝部三维有限元仿真模型的构建及验证[J].中国数字医学,2016,11(4):83-86.
[14] WONG DW, ZHANG M, YU J, et al. Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis.Med Eng Phys. 2014;36(11):1388-1393.
[15] 金立夫, 胡海威, 温建民, 等. 第1跖楔关节失稳与(足母)外翻术后转移性跖骨痛相关性-前足跖骨头下压力的有限元研究[J].中国矫形外科杂志,2013,21(9):908-913.
[16] 冯其金,赵玲娟,郑昆仑,等.有限元分析法在腰椎生物力学中的研究进展[J].中国中西医结合外科杂志,2018,24(2):255-258.
[17] KIMURA T, KUBOTA M, TAGUCHI T, et al. Evaluation of First-Ray Mobility in Patients with Hallux Valgus Using Weight-Bearing CT and a 3-D Analysis System: A Comparison with Normal Feet. J Bone Joint Surg Am. 2017;99(3): 247-255.
[18] MORTON DJ. Structural factors in static disorders of the foot. Am J Surg. 1930;9:315-326.
[19] KAI T, CHENG-TAO W, DONG-MEI W, et al. Primary analysis of the first ray using a 3-dimension finite element foot model. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:2946-2949.
[20] DIETZE A, BAHLKE U, MARTIN H, et al. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34(1):124-130.
[21] DEENIK AR, DE VISSER E, LOUWERENS JW, et al. Hallux valgus angle as main predictor for correction of hallux valgus. BMC Musculoskelet Disord. 2008;9:70.
[22] WALTER R, KOSY JD, COVE R. Inter- and intra-observer reliability of a smartphone application for measuring hallux valgus angles. Foot Ankle Surg. 2013;19(1):18-21.
[23] 吕振木, 孙超, 张奉琪, 等. 合并DMAA增大的(足母)外翻治疗[J].足踝外科电子杂志,2015,2(1):7-9.
[24] SRIVASTAVA S, CHOCKALINGAM N, EL FAKHRI T. Radiographic angles in hallux valgus: comparison between manual and computer-assisted measurements. Foot Ankle Surg. 2010;49(6):523-528.
[25] CAMPBELL B, MILLER MC, WILLIAMS L, et al. Pilot study of a 3-dimensional method for analysis of pronation of the first metatarsal of hallux valgus patients. Foot Ankle Int. 2018;39(12):1449-1456.
[26] 张鹏, 钟宗雨, 金泽亚, 等. 基于足负重位CT影像应用Mimics软件测量踇外翻相关指标[J].中华解剖与临床杂志,2018,23(1):7-13.
[27] ZHONG Z, ZHANG P, DUAN H, et al. A Comparison Between X-ray Imaging and an Innovative Computer-aided Design Method Based on Weightbearing CT Scan images for Assessing Hallux Valgus. J Foot Ankle Surg. 2020;S1067-2516(19)30289-3.
[28] ZHANG YZ, LU S, ZHANG HQ, et al. Alignment of the lower extremity mechanical axis by computer-aided design and application in total knee arthroplasty. Int J Comput Assist Radiol Surg. 2016;11(10):1881-1890.
[29] 孙青刚,康庆林,徐佳,等.踇外翻畸形的治疗进展[J].山东医药, 2014,54(23):86-88.
[30] HIRAO M, IKEMOTO S, TSUBOI H, et al. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report. Comput Aided Surg. 2014;19(1-3):13-19.
[31] DAVIES MB, BLUNDELL CM, MARQUIS CP, et al. Interpretation of the scarf osteotomy by 10 surgeons. Foot Ankle Surg. 2011;17(3):108-112.
[32] 孙卫东, 温建民, 胡海威, 等. 拇外翻第1跖骨颈部不同截骨角度截骨端稳定性有限元分析[J].中华损伤与修复杂志,2012,7(5): 492-496.
[33] MATZAROGLOU C, BOUGAS P, PANAGIOTOPOULOS E, et al. Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite element analysis. Open Orthop J. 2010;4: 152-156.
[34] 毕春强, 温建民, 孙卫东, 等. 静态有限元法分析基于“裹帘”法外固定拇外翻术后截骨端的稳定性[J].中国组织工程研究,2016, 20(22):3294-3300.
[35] KAY DB, NJUS G, PARRISH W, et al. Basilar crescentic osteotomy. A three-dimensional computer simulation. Orthop Clin North Am. 1989; 20(4): 571-582.
[36] 孙卫东, 边蔷, 李晏乐, 等. 软组织对微创截骨矫正(足母)外翻稳定性影响的有限元研究[J].中国矫形外科杂志,2018,26(11): 1030-1034.
[37] BRILAKIS EV, KASELOURIS E, MARKATOS K, et al. Mitchell’s osteotomy augmented with bio-absorbable pins for the treatment of hallux valgus: A comparative finite element study. J Musculoskelet Neuronal Interact. 2019;19(2):234-244.
[38] 胡梦蝶. 3D打印技术在口腔医学中的应用现状[J].临床口腔医学杂志,2018,34(11):696-700.
[39] 中华医学会医学工程学分会数字骨科学组, 国际矫形与创伤外科学会(SICOT)中国部数字骨科学组. 3D打印骨科手术导板技术标准专家共识[J].中华创伤骨科杂志,2019,21(1):6-9.
[40] 张元智, 路全立, 莫伟鹏, 等. 3D打印改良Reverdin截骨模板治疗(踇)外翻畸形的初步应用[J].中华创伤骨科杂志,2018,20(10): 897-900.
[41] 李海岩,丁成,阮世捷, 等.足部有限元模型的构建与验证[J].中国组织工程研究与临床康复,2011,15(13):2381-2384.
[42] 段家章,何晓清,徐永清, 等.数字化技术在股前外侧皮瓣修复手足创面中的应用[J].中国修复重建外科杂志,2015,29(7):807-811.
|