[1] van den Borne SW, Diez J, Blankesteijn WM, et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7(1):30-37.[2] Coulombe KL, Bajpai VK, Andreadis ST, et al. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng. 2014;16:1-28.[3] Winters AA, Bou-Ghannam S, Thorp H, et al. Evaluation of Multiple Biological Therapies for Ischemic Cardiac Disease. Cell Transplant. 2016;25(9):1591-1607.[4] Ma T, Sun J, Zhao Z, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther. 2017;8(1):124.[5] Santos Nascimento D, Mosqueira D, Sousa LM, et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther. 2014;5(1):5.[6] Li L, Jaiswal PK, Makhoul G, et al. Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells. J Thorac Cardiovasc Surg. 2017;154(2):543-552.[7] Perea-Gil I, Monguió-Tortajada M, Gálvez-Montón C, et al. Preclinical evaluation of the immunomodulatory properties of cardiac adipose tissue progenitor cells using umbilical cord blood mesenchymal stem cells: a direct comparative study. Biomed Res Int. 2015;2015:439808.[8] 王永伟,张晋,徐曼,等. 人脐带和骨髓来源间充质干细胞移植治疗小鼠心肌梗死的比较研究[J]. 中国循证心血管医学杂志, 2013,5(2):196-199.[9] McElreavey KD, Irvine AI, Ennis KT, et al. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans. 1991;19(1):29S.[10] 张嵬,刘晓程. 沃顿胶体间充质干细胞生物学特性及在心血管领域的应用[J]. 中国组织工程研究,2013,17(23):4320-4327.[11] 高连如. “生物药”——Wharton's jelly源间充质干细胞[J]. 转化医学杂志, 2016, 5(4): 193-197.[12] Gao LR, Zhang NK, Ding QA, et al. Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transplant. 2013;22(10): 1883-900.[13] Zhang W, Liu XC, Yang L, et al. Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis. 2013;24(7):549-558.[14] López Y, Lutjemeier B, Seshareddy K, et al. Wharton's jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Curr Stem Cell Res Ther. 2013;8(1):46-59.[15] Kim DW, Staples M, Shinozuka K, et al. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14(6):11692-11712.[16] Garzón I, Pérez-Köhler B, Garrido-Gómez J, et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. Tissue Eng Part C Methods. 2012;18(6): 408-419.[17] 裴宇,刘晓程,张嵬,等. 同种、异种脐带间充质干细胞移植治疗猪急性心肌梗死模型疗效对比[J]. 中华全科医学, 2015, 13(12): 1935-1937.[18] Latifpour M, Nematollahi-Mahani SN, Deilamy M, et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology. 2011;120(1):9-18.[19] Liu CB, Huang H, Sun P, et al. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia. Stem Cells Transl Med. 2016;5(8): 1004-1013.[20] Fisher SA, Zhang H, Doree C, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2015;(9):CD006536.[21] Gao LR, Pei XT, Ding QA, et al. A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. Int J Cardiol. 2013;168(4): 3191-3199.[22] 徐培敬,胡有东,张枫林,等. 人脐带间充质干细胞治疗老年心肌梗死的CD34+细胞、Toll样受体2和Toll样受体4的表达水平分析[J]. 中华损伤与修复杂志:电子版, 2013, 8(5):487-491.[23] 李侠,郭燕,胡有东,等. 脐带间充质干细胞治疗老年人陈旧性心肌梗死对血小板糖蛋白和内皮细胞黏附分子的影响[J]. 中华老年医学杂志, 2013, 32(6):582-585.[24] Li X, Hu YD, Guo Y, et al. Safety and efficacy of intracoronary human umbilical cord-derived mesenchymal stem cell treatment for very old patients with coronary chronic total occlusion. Curr Pharm Des. 2015;21(11):1426-1432.[25] Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162.[26] 田洪榛,陈江,张晓霞,等. 脐带华通胶间充质干细胞治疗缺血性心力衰竭的2年随访观察[J]. 解放军医学院学报, 2016, 37(5): 407-412.[27] 梁晓辉,赵子粼,罗建春,等. WJ-MHCs对心肌梗死后心力衰竭患者NT-proBNP水平的影响[J]. 西南国防医药, 2014, 24(5): 483-486.[28] Musialek P, Mazurek A, Jarocha D, et al. Myocardial regeneration strategy using Wharton's jelly mesenchymal stem cells as an off-the-shelf 'unlimited' therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. Postepy Kardiol Interwencyjnej. 2015;11(2):100-107.[29] Fong CY, Chak LL, Biswas A, et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7(1):1-16.[30] Gauthaman K, Fong CY, Suganya CA, et al. Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod Biomed Online. 2012;24(2):235-246.[31] Di Siena S, Gimmelli R, Nori SL, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7(7):e2317.[32] Sullivan KE, Quinn KP, Tang KM, et al. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther. 2014;5(1):14.[33] Yannarelli G, Dayan V, Pacienza N, et al. Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant. 2013;22(9):1651-1666.[34] Xu H, Dong H, Zhao M. Effects of human umbilical cord mesenchymal stem cells on vascular endothelial growth factor and IL-6 expression in tissue of AMI rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(6):511-514.[35] Zhao Y, Sun X, Cao W, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells Int. 2015;2015: 761643.[36] Wu SZ, Li YL, Huang W, et al. Paracrine effect of CXCR4-overexpressing mesenchymal stem cells on ischemic heart injury. Cell Biochem Funct. 2017;35(2):113-123.[37] Marsano A, Maidhof R, Luo J, et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 2013;34(2):393-401.[38] Cho HM, Kim PH, Chang HK, et al. Targeted Genome Engineering to Control VEGF Expression in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells: Potential Implications for the Treatment of Myocardial Infarction. Stem Cells Transl Med. 2017;6(3):1040-1051.[39] Ma J, Zhao Y, Sun L, et al. Exosomes Derived from Akt-Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D. Stem Cells Transl Med. 2017;6(1):51-59.[40] Zhao L, Liu X, Zhang Y, et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res. 2016;344(1):30-39.[41] Arechederra M, Carmona R, González-Nuñez M, et al. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice. Biochim Biophys Acta. 2013;1832(12): 2204-2215.[42] Kim BR, Seo SH, Park MS, et al. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget. 2015;6(31):31830-31843.[43] 曹文明,孙丽,赵媛媛,等. 脐带MSC来源外体上调Smad7表达修复大鼠急性心肌损伤[J]. 临床检验杂志, 2015, 33(7): 527-531.[44] 李佳,辛毅,崔巍,等.人脐带间充质干细胞外泌小体保护缺氧复氧损伤的心肌细胞[J]. 中国病理生理杂志, 2016,32(4): 577-583.[45] Sabapathy V, Sundaram B, V M S, et al. Human Wharton's Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9(4): e93726.[46] Schernthaner C, Paar V, Wernly B, et al. Elevated plasma levels of interleukin-16 in patients with acute myocardial infarction. Medicine (Baltimore). 2017;96(44):e8396.[47] Banerjee I, Fuseler JW, Intwala AR, et al. IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol. 2009;296(5): H1694-1704.[48] Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem. 2012;113(5):1460-1469.[49] Arutyunyan I, Elchaninov A, Makarov A, et al. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286.[50] Lin HY, Liou CW, Chen SD, et al. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;22:31-44.[51] Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells. 2008;26(11):2865-2874.[52] 武丽萍,蔡力,陶剑虹,等. 不同月龄人脐带间充质干细胞移植梗死心肌的血运重建[J]. 中国组织工程研究, 2013, 17(49): 8520-8526.[53] 王巍,李肖甫,李中健. 不同孕周人脐带间充质干细胞移植改善心肌梗死模型心脏功能的比较[J]. 中国组织工程研究, 2016, 20(6):79-806.[54] 赵璐洋,孙瑛,李连冲. 心室内注射人脐带间充质干细胞改善心肌梗死大鼠心功能及作用机制[J]. 中国组织工程研究, 2017, 21(25):4026-4031. |