中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (5): 1129-1138.doi: 10.12307/2026.040

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

自噬相关基因在肺纤维化模型中的表达:生物信息学分析及实验验证

刘可新1,2,郝凯敏2,庄文越2,3,李正祎1   

  1. 1吉林医药学院,吉林省吉林市  132001;2北华大学,吉林省吉林市  132001;3浙江万里学院,浙江省宁波市  315100
  • 收稿日期:2024-11-19 接受日期:2025-01-24 出版日期:2026-02-18 发布日期:2025-06-23
  • 通讯作者: 李正祎,博士,教授,硕士生导师,吉林医药学院,吉林省吉林市 132001
  • 作者简介:刘可新,女,1998年生,吉林省长春市人,汉族,北华大学在读硕士(吉林医药学院联合培养),主要从事生物化学及分子生物学研究。
  • 基金资助:
    吉林省自然基金项目(YDZJ202201ZYTS637),项目负责人:庄文越;吉林医药学院研究生创新计划项目(2023yy01),项目负责人:刘可新

Autophagy-related gene expression in pulmonary fibrosis models: bioinformatic analysis and experimental validation

Liu Kexin1, 2, Hao Kaimin2, Zhuang Wenyue2, 3, Li Zhengyi1   

  1. 1Laboratory Academy, Jilin Medical University, Jilin 132001, Jilin Province, China; 2Beihua University, Jilin 132001, Jilin Province, China; 3Zhejiang Wanli University, Ningbo 315100, Zhejiang Province, China 
  • Received:2024-11-19 Accepted:2025-01-24 Online:2026-02-18 Published:2025-06-23
  • Contact: Li Zhengyi, PhD, Professor, Master’s supervisor, Laboratory Academy, Jilin Medical University, Jilin 132001, Jilin Province, China
  • About author:Liu Kexin, MS candidate, Laboratory Academy, Jilin Medical University, Jilin 132001, Jilin Province, China; Beihua University, Jilin 132001, Jilin Province, China
  • Supported by:
    Jilin Province Scientific and Technology Development Project, No. YDZJ202201ZYTS637 (to ZWY); Jilin Medical University Graduate Innovation Program, No. 2023yy01 (to LKX)

摘要:


文题释义:
肺纤维化:是一种严重的肺部病变,它的主要病理特征是肺泡间质炎性细胞浸润和肺部胶原蛋白的沉积,病变通常会导致肺功能下降、呼吸困难,甚至因呼吸衰竭而死亡。
自噬:是一种程序性细胞死亡机制,可在自噬相关基因的调控下通过溶酶体降解、清除、回收利用受损细胞器和蛋白以维持细胞内稳态。

背景:自噬对上皮细胞、成纤维细胞和肌成纤维细胞之间的应激作用与肺纤维化的形成过程密切相关。
目的:筛选肺纤维化患者基因水平变化与自噬相关的基因,并探究其与肺纤维化患者预后的关联,以期为临床干预肺纤维化提供新的靶点。
方法:以GSE70866下载的基因表达谱数据集为训练集,利用R语言对肺纤维化患者和正常健康者之间基因表达进行差异分析并与自噬相关基因取交集,鉴定出变化最为显著的差异基因。运用多种分析方法筛选出关键预后基因,并构建基因预后模型。根据肺纤维化患者的风险评分分为高风险组和低风险组,应用Siena cohort和Leuven cohort验证集验证预后模型的有效性。并通过转化生长因子β1诱导HFL-1细胞(人胚肺成纤维细胞)建立肺纤维化细胞模型以及博莱霉素气管滴注建立小鼠肺纤维化动物模型验证预后基因的表达。
结果与结论:①肺纤维化组织和正常组织之间存在2 650个差异基因,其中与自噬相关基因有34个发生显著变化;②Siena cohort和Leuven cohort验证集的Kaplan-Meier生存分析曲线显示,高风险组的存活率明显比低风险组低;③筛选出3个与预后相关的自噬基因:骨髓瘤病病毒癌基因、趋化因子配体2、GABAA型受体相关蛋白样1;④体内外研究均显示与对照组相比,肺纤维化模型组骨髓瘤病病毒癌基因和趋化因子配体2 mRNA及蛋白表达显著升高(P < 0.01,P < 0.05),而GABAA型受体相关蛋白样1 mRNA及蛋白表达有所降低(P < 0.001);⑤结论:通过生物信息学方法分析了3个自噬相关基因在肺纤维化中的表达及其与肺纤维化患者预后的相关性,构建的预后模型对肺纤维化患者1,2,3年生存率具有良好的预测能力;并且通过体内和体外模型验证了在肺纤维化细胞和组织中骨髓瘤病病毒癌基因和趋化因子配体2呈高水平表达,GABAA型受体相关蛋白样1呈低水平表达。

https://orcid.org/0009-0001-9358-1769 (刘可新) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 肺纤维化, 自噬, 生物信息学, 差异表达基因, 预后模型, R语言, 博莱霉素, TGF-β1

Abstract: BACKGROUND: The stress effect of autophagy on epithelial cells, fibroblasts and myofibroblasts is closely related to the formation process of pulmonary fibrosis.
OBJECTIVE: To screen the genes related to autophagy in patients with pulmonary fibrosis, and explore their correlation with the prognosis of patients with pulmonary fibrosis, in order to provide a new target for clinical intervention in pulmonary fibrosis.
METHODS: The gene expression profiling dataset downloaded from GSE70866 was used as a training set, differentially expressed genes between pulmonary fibrosis patients and normal healthy individuals was analyzed using the R language and intersected with autophagy-related genes to identify the differentially expressed genes with the most significant changes. Multiple analysis methods were used to identify key prognostic genes and construct genetic prognostic models. Patients with pulmonary fibrosis were divided into high-risk and low-risk groups according to their risk scores, and the validity of the prognostic model was verified using the Siena cohort and Leuven cohort validation sets. A cell model of pulmonary fibrosis was established by inducing HFL-1 cells (human embryonic lung fibroblasts) with transforming growth factor-β1, and an animal model of pulmonary fibrosis was established in mice by tracheal instillation of bleomycin to validate the expressions of prognostic genes.
RESULTS AND CONCLUSION: (1) There were 2 650 differentially expressed genes between fibrotic tissue and normal tissue. Among them, 34 genes related to autophagy showed significant expression changes. (2) Kaplan-Meier survival analysis curves for the Siena cohort and Leuven cohort validation sets showed significantly lower survival in the high-risk group than in the low-risk group. (3) Three autophagy genes related to prognosis were screened out: myelocytomatosis viral oncogene (MYC), C-C motif chemokine ligand 2 (CCL2), and GABA type a receptor associated protein like 1 (GABARAPL1). (4) Both in vivo and in vitro studies showed that compared with the control group, the expression levels of myelocytomatosis viral oncogene and C-C motif chemokine ligand 2 mRNA and protein were significantly higher in the lung fibrosis model group (P < 0.01, P < 0.05), while the expression levels of GABA type a receptor associated protein like 1 mRNA and protein were lower (P < 0.001). To conclude, bioinformatics methods are used to analyze the expression of three autophagy-related genes in pulmonary fibrosis and their correlation with the prognosis of patients with pulmonary fibrosis. The constructed prognostic model has good predictive ability for the 1-, 2-, and 3-year survival rates of patients with pulmonary fibrosis. Moreover, in vivo and in vitro models have been used to verify that myelocytomatosis viral oncogene and C-C motif chemokine ligand 2 are highly expressed in lung fibroblasts and tissues, and that GABA type a receptor associated protein like 1 is lowly expressed.

Key words: pulmonary fibrosis, autophagy, bioinformatics, differentially expressed genes, prognostic model, R programming language, bleomycin, TGF-β1

中图分类号: