中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (22): 5728-5738.doi: 10.12307/2026.175

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

构建基于子宫内膜自噬相关基因水平的复发性流产诊断模型

唐  岑,胡万芹   

  1. 昆明医科大学第二附属医院产科,云南省昆明市   650101 
  • 收稿日期:2025-04-03 接受日期:2025-09-11 出版日期:2026-08-08 发布日期:2025-12-26
  • 通讯作者: 胡万芹,主任医师,昆明医科大学第二附属医院产科,云南省昆明市 650101
  • 作者简介:唐岑,女,2000年生,四川省广安市人,汉族,昆明医科大学在读硕士,主要从事复发性流产免疫耐受和巨噬细胞外泌体细胞交互的研究。
  • 基金资助:
    国家自然科学基金项目(82060294),项目负责人:胡万芹

Establishing a diagnostic model for recurrent spontaneous abortion based on the levels of autophagy-related genes in the endometrium

Tang Cen, Hu Wanqin   

  1. Department of Obstetrics, Kunming Medical University Second Affiliated Hospital, Kunming 650101, Yunnan Province, China
  • Received:2025-04-03 Accepted:2025-09-11 Online:2026-08-08 Published:2025-12-26
  • Contact: Hu Wanqin, Chief physician, Department of Obstetrics, Kunming Medical University Second Affiliated Hospital, Kunming 650101, Yunnan Province, China
  • About author:Tang Cen, MS candidate, Department of Obstetrics, Kunming Medical University Second Affiliated Hospital, Kunming 650101, Yunnan Province, China
  • Supported by:
    the National Natural Science Foundation of China, No. 82060294 (to HWQ)

摘要:


文题释义:
复发性流产:复发性流产的病因复杂,可能导致子宫内膜损伤,增加盆腔炎、输卵管堵塞等疾病的发生风险,从而对女性的生殖健康造成长期损害。近年来,随着遗传学和免疫学等领域的快速发展,自噬相关基因在复发性流产中的作用机制被逐渐揭示,为治疗提供了新的靶点。
自噬:适当的自噬调控在提高卵母细胞质量、调控子宫内膜生长等方面发挥着重要作用。复发性流产患者子宫内膜中谷氨酰胺代谢水平降低,伴随着子宫内膜细胞的自噬增强,这种异常的代谢微环境可能通过影响子宫内膜的容受性,进而对妊娠的维持产生不利影响。自噬与复发性流产之间存在密切的相关性,通过调节自噬水平可能有助于改善复发性流产患者的生育结局。

背景:复发性流产的病因复杂,随着遗传学等领域的发展,发现自噬相关基因的异常表达可能导致细胞稳态失衡,进而引发细胞凋亡、炎症和免疫抑制反应等病理进程,影响子宫内膜微环境、滋养细胞和免疫细胞功能,从而导致复发性流产的发生。通过利用GEO数据库中的复发性流产样本,分析自噬相关基因的表达变化及调控机制,有助于揭示复发性流产机制并开发新的治疗策略。然而,自噬相关基因在复发性流产中的具体作用机制,以及与其他生物过程之间的相互作用关系还需进一步研究。
目的:旨在建立一种基于自噬相关基因预测复发性流产患者预后的风险评分预后模型。
方法:从GEO数据库中获得复发性流产患者的子宫内膜基因表达矩阵,从HADb数据库中获得自噬相关基因,筛选出30个共同差异表达的自噬相关基因。通过GO、KEGG以及DisGeNET富集分析自噬相关基因的生物学功能,通过LASSO回归和logistic回归等鉴定出16个自噬相关基因作为潜在生物标志物。随后,将目的基因建立一个Nomogram模型,采用受试者工作特征曲线评价模型的预测精度,并通过比较随机森林模型、支持向量机模型、广义线性模型等6种机器学习模型的性能,选择最优机器模型。采用Nomogram、校准曲线和决策曲线分析机器模型验证预测的有效性。
结果与结论:①GO分析表明复发性流产患者的自噬相关基因功能主要富集于自噬调控、细胞分解代谢过程、线粒体或其他细胞器膜的形成等;②KEGG分析表明复发性流产患者的自噬相关基因富集于自噬调控、磷脂酰肌醇3激酶/蛋白激酶B信号通路、人乳头瘤病毒感染和神经退化通路等;③GSEA分析表明复发性流产患者的自噬相关基因参与铜的解毒作用和质子跨膜运输的生物过程、肌浆网的细胞组分以及调节核苷二磷酸磷酸酶活性的分子功能;④构建预测风险模型,发现16个特异性的自噬相关基因可作为复发性流产的预测靶点;⑤根据机器模型的检测效能选择最优的神经网络模型,筛选出5个最重要的复发性流产自噬相关基因变量(MAP2K7、CALCOCO2、SAR1A、TUSC1和STK11);⑥利用GEO数据库的欧洲群体的复发性流产样本,从遗传学的单核苷酸多态性层面可以分析子宫内膜的基因表达模式、差异表达基因及信号通路等,基于良好预测效能的预测模型和机器学习模型可以筛选出复发性流产患者的自噬相关新治疗靶点和潜在生物标志物,对临床工作和机制研究都有一定的指导意义。 
https://orcid.org/0009-0006-8338-3343 (唐岑) 


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 复发性流产, 自噬, 单核苷酸多态性, 预后模型, 机器学习, 生物信息学

Abstract: BACKGROUND: The etiology of recurrent spontaneous abortion is complex. With the development of genetics and other fields, it has been found that the abnormal expression of autophagy-related genes may lead to the imbalance of cell homeostasis, thus triggers pathological processes, such as apoptosis, inflammatory response and immunosuppressive response, and affects the endometrial microenvironment, trophoblastic function and immune cell function, thereby leading to recurrent spontaneous abortion. By using the recurrent spontaneous abortion samples in the Gene Expression Omnibus database, the expression changes and regulatory mechanisms of autophagy-related genes were analyzed, which is helpful to reveal the mechanism of recurrent spontaneous abortion and develop new therapeutic strategies. However, the specific mechanism of autophagy-related genes in recurrent spontaneous abortion and their interaction with other biological processes still need to be further studied.
OBJECTIVE: To establish a risk score prognostic model for patients with recurrent spontaneous abortion based on autophagy-related genes.
METHODS: Endometrial gene expression matrix of patients with recurrent abortion was obtained from the Gene Expression Omnibus database, autophagy-related genes were obtained from the Human Autophagy Database (HADb), and 30 differentially co-expressed autophagy-related genes were identified. The biological functions of autophagy-related genes were analyzed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment. LASSO and logistic regression analyses were used to identify 16 autophagy-related genes as potential biomarkers. A Nomogram model was subsequently established for the target gene, and the prediction accuracy of the model was evaluated by using the receiver operating characteristic curve. The optimal machine model was selected by comparing the performance of six machine learning models, including random forest model, support vector machine model and generalized linear model. Nomogram, calibration curve and decision curve were used to analyze the machine model to verify the validity of the prediction.
RESULTS AND CONCLUSION: (1) GO analysis showed that the functions of autophagy-related genes in patients with recurrent abortion were mainly involved in autophagy regulation, cellular catabolism, and the formation of mitochondria or other organelle membranes. (2) KEGG analysis showed that autophagy-related genes were enriched in autophagy regulation, phosphatidylinositol 3-kinase/protein kinase B signaling pathway, human papillomavirus infection and neurodegeneration pathway in patients with recurrent abortion. (3) Gene set enrichment analysis showed that autophagy-related genes in patients with recurrent abortion were involved in the biological processes of copper detoxification and proton transmembrane transport, the cellular components of sarcoplasmic reticulum, and the molecular function of regulating nucleoside diphosphate phosphatase activity. (4) A predictive risk model was constructed, and 16 specific autophagy related genes were found to be predictive targets for recurrent abortion. (5) The best neural network model was selected according to the detection efficiency of the machine model, and five most important gene variables related to recurrent abortion autophagy (MAP2K7, CALCOCO2, SAR1A, TUSC1 and STK11) were identified. (6) Using the European population analysis of recurrent abortion samples in the GEO database, gene expression patterns, differentially expressed genes and signaling pathways in recurrent abortion samples can be analyzed from the level of genetic single nucleotide polymorphisms. The predictive model and machine learning model based on good predictive efficiency can identify new therapeutic targets and potential biomarkers related to autophagy in patients with recurrent abortion, which has certain guiding significance for clinical work and mechanism research.


Key words: recurrent spontaneous abortion, autophagy, single nucleotide polymorphism, prognostic model, machine learning, bioinformatics

中图分类号: