中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (35): 7578-7588.doi: 10.12307/2026.526
• 组织构建综述 tissue construction review • 上一篇 下一篇
刘 璇1,丁雨晴1,夏若寒2,汪献旺2,胡淑娟1
收稿日期:
2024-12-23
接受日期:
2025-02-20
出版日期:
2025-12-18
发布日期:
2025-05-06
通讯作者:
胡淑娟,博士,副教授,长江大学教育与体育学院,湖北省荆州市 423000
作者简介:
刘璇,男,2000年生,山西省运城市人,汉族,硕士,主要从事运动与健康促进方面的研究。
共同第一作者:丁雨晴,女,1998年生,河南省开封市人,汉族,硕士,主要从事运动与健康促进方面的研究。
基金资助:
Liu Xuan1, Ding Yuqing1, Xia Ruohan2, Wang Xianwang2, Hu Shujuan1
Received:
2024-12-23
Accepted:
2025-02-20
Online:
2025-12-18
Published:
2025-05-06
Contact:
Hu Shujuan, PhD, Associate professor, School of Education and Physical Education, Yangtze University, Jingzhou 423000, Hubei Province, China
About author:
Liu Xuan, Master, School of Education and Physical Education, Yangtze University, Jingzhou 423000, Hubei Province, China
Ding Yuqing, Master, School of Education and Physical Education, Yangtze University, Jingzhou 423000, Hubei Province, China
Liu Xuan and Ding Yuqing contributed equally to this work.
Supported by:
摘要:
文题释义:
胰岛素抵抗:是一种机体对胰岛素的敏感性降低,引起胰岛素生物学效应减弱的状态,是2型糖尿病发病的关键因素。胰岛素与其受体结合后能够激活胰岛素受体底物和磷脂酰肌醇3-激酶等下游信号分子,进而促进葡萄糖转运蛋白的转位,增加葡萄糖的摄取和利用,维持血糖水平的稳定。而在胰岛素抵抗病理状态下这一信号传导过程受损,削弱了胰岛素的降糖功能,进而导致血糖水平升高。
Keap1/核因子E2相关因子2信号通路:在维持心血管疾病和慢性代谢性等疾病的细胞稳态中扮演着至关重要的角色,是近年来在细胞抗氧化应激反应中发现的关键内源性途径。在2型糖尿病和胰岛素抵抗的病理状态下,核因子E2相关因子2信号通路能够响应炎症和氧化应激而激活,改善胰岛素信号传导,从而对抗胰岛素抵抗。
背景:运动干预在疾病预防和治疗过程中发挥着关键作用,能够有效激活核因子E2相关因子2(nuclear factor erythroid2-related factor 2,Nrf2)信号通路来防治胰岛素抵抗的发生发展,但目前关于靶向Nrf2的运动治疗策略在缓解胰岛素抵抗中的潜在作用机制尚不明晰。
目的:以Nrf2、胰岛素抵抗和运动三者的关系为切入点,分析不同运动方式对Nrf2激活的机制及影响,阐明靶向Nrf2的运动治疗策略在缓解胰岛素抵抗过程中的潜在作用机制。
方法:以“糖尿病,胰岛素,胰岛素抵抗,核因子E2相关因子2,氧化应激,铁死亡,自噬,炎症反应,运动”为中文检索词;以“Diabetes mellitus,insulin resistance,Keap1/Nrf2,oxidative stress, ferroptosis,autophagy,Inflammatory response,exercise”为英文检索词,在万方数据库、中国知网、Google Scholar和PubMed数据库中搜寻建库以来至2024年10月发表的所有研究文献,根据入选标准最终纳入核心相关文献127篇进行综述。
结果与结论:①Keap1/Nrf2信号通路作为重要的内源性抗氧化应激通路,在胰岛素抵抗中扮演着重要角色,其激活可以增强细胞的抗氧化能力,减轻氧化应激和炎症反应,改善胰岛素信号传导,从而对胰岛素抵抗起到保护作用。②多种运动方式(包括有氧运动、抗阻运动和高强度间歇运动等)均可有效激活Nrf2信号,提高抗氧化应激酶活性,增强细胞抗氧化能力,从而在一定程度上缓解了氧化应激损伤。③运动通过激活Nrf2信号通路能够上调血红素加氧酶1、超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶、谷胱甘肽等抗氧化酶活性,增强细胞抗氧化能力;还可以调控铁死亡途径中的关键酶和蛋白质,如谷胱甘肽过氧化物酶4、膜铁转运蛋白1、铁蛋白重链1等,抑制铁死亡途径,促进铁代谢平衡;增强自噬相关基因选择性自噬接头蛋白p62、自噬相关蛋白5/7的表达,提高脂质化形式的微管相关蛋白1轻链3水平,从而调节自噬过程;降低肿瘤坏死因子α、核因子κB、白细胞介素6、白细胞介素1β等促炎细胞因子活性,有效抑制炎症反应。这些综合效应有助于减轻氧化应激损伤、提高胰岛素敏感性并改善胰岛素信号传导,对改善胰岛素抵抗具有积极作用。④鉴于Keap1/Nrf2信号通路在胰岛素抵抗发病进程及治疗中发挥重要作用,靶向Keap1/Nrf2信号通路的运动治疗策略将有助于推动胰岛素抵抗“运动+药物”精准医疗的发展。
https://orcid.org/0009-0003-6925-1238(刘璇);https://orcid.org/0000-0001-6860-9080(胡淑娟)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
刘 璇, 丁雨晴, 夏若寒, 汪献旺, 胡淑娟. 运动防治胰岛素抵抗:Keap1/核因子E2相关因子2信号通路的作用与分子机制[J]. 中国组织工程研究, 2025, 29(35): 7578-7588.
Liu Xuan, Ding Yuqing, Xia Ruohan, Wang Xianwang, Hu Shujuan. Exercise prevention and treatment of insulin resistance: role and molecular mechanism of Keap1/nuclear factor erythroid2-related factor 2 signaling pathway[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7578-7588.
[1] MAILLARD F, PEREIRA B, BOISSEAU N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med. 2018;48(2):269-288. [2] 苏青,臧丽.胰岛素抵抗的历史、机制和管理[J].中华糖尿病杂志, 2023,15(1):6-13. [3] PARCHA V, HEINDL B, KALRA R, et al. Insulin Resistance and Cardiometabolic Risk Profile Among Nondiabetic American Young Adults: Insights From NHANES. J Clin Endocrinol Metab. 2022;107(1): e25-e37. [4] 中华医学会糖尿病学分会.胰岛素抵抗相关临床问题专家共识(2022版)[J].中华糖尿病杂志,2022,14(12):1368-1379. [5] ZHAO M, ZHANG X, TAO X, et al. Sirt2 in the Spinal Cord Regulates Chronic Neuropathic Pain Through Nrf2-Mediated Oxidative Stress Pathway in Rats. Front Pharmacol. 2021;12:646477. [6] MOI P, CHAN K, ASUNIS I, et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994;91(21):9926-9930. [7] LI S, EGUCHI N, LAU H, et al. The Role of the Nrf2 Signaling in Obesity and Insulin Resistance. Int J Mol Sci. 2020;21(18):6973. [8] ZHANG Y, WU Q, LIU J, et al. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. Biomed Pharmacother. 2022;152:113273. [9] BIRD SR, HAWLEY JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2016;2(1): e000143. [10] LI N, SHI H, GUO Q, et al. Aerobic Exercise Prevents Chronic Inflammation and Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice. Nutrients. 2022;14(18):3730. [11] SUN M, ZHAO X, LI X, et al. Aerobic Exercise Ameliorates Liver Injury in Db/Db Mice by Attenuating Oxidative Stress, Apoptosis and Inflammation Through the Nrf2 and JAK2/STAT3 Signalling Pathways. J Inflamm Res. 2023;16:4805-4819. [12] 刘玉倩,杨雯茜,王海涛.Nrf2/FPN1介导的铁稳态通路在有氧运动预防小鼠肝胰岛素抵抗中的作用[J].中国运动医学杂志,2023, 42(4):294-302. [13] YU Q, XIA Z, LIONG EC, et al. Chronic aerobic exercise improves insulin sensitivity and modulates Nrf2 and NF‑κB/IκBα pathways in the skeletal muscle of rats fed with a high fat diet. Mol Med Rep. 2019;20(6):4963-4972. [14] 赵格,骆远,李亚平,等.核因子E2相关因子2在运动改善非酒精性脂肪性肝病中的作用[J].生物化学与生物物理进展,2024,51(5): 1079-1089. [15] 席回林,吴佳俊,王青燕,等.核因子E2相关因子2在脊髓损伤后氧化应激中的研究进展[J].中国比较医学杂志,2024,34(12):136-142. [16] LIN L, WU Q, LU F, et al. Nrf2 signaling pathway: current status and potential therapeutic targetable role in human cancers. Front Oncol. 2023;13:1184079. [17] HE F, RU X, WEN T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci. 2020;21(13):4777. [18] KO Y, HONG M, LEE S, et al. S-lactoyl modification of KEAP1 by a reactive glycolytic metabolite activates NRF2 signaling. Proc Natl Acad Sci U S A. 2023;120(20):e2300763120. [19] BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865(5):721-733. [20] LI W, YU S, LIU T, et al. Heterodimerization with small Maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif. Biochim Biophys Acta. 2008;1783(10):1847-1856. [21] QIAN H, CHAO X, WILLIAMS J, et al. Autophagy in liver diseases: A review. Mol Aspects Med. 2021;82:100973. [22] 杨帆,张晓云,娄菲菲,等.加减补阳还五汤通过激活自噬促进Nrf2核转移改善糖尿病肾病足细胞损伤[J/OL].中药药理与临床,1-12[2025-02-21].https://doi.org/10.13412/j.cnki.zyyl.20241022.001. [23] 丁美灵,高铭,包懿文,等.基于p62-Keap1-Nrf2信号通路探讨荆防颗粒对酒精性肝损伤小鼠的保护作用[J].中草药,2024,55(19): 6588-6598. [24] DONG W, LIU G, ZHANG K, et al. Cadmium exposure induces rat proximal tubular cells injury via p62-dependent Nrf2 nucleus translocation mediated activation of AMPK/AKT/mTOR pathway. Ecotoxicol Environ Saf. 2021;214:112058. [25] SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Mol Neurobiol. 2020;57(11):4628-4641. [26] BO T, GAO L, YAO Z, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab. 2024;36(5):947-968. [27] ZHANG S, ZHANG S, ZHANG Y, et al. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner. J Ethnopharmacol. 2024;327:117931.
[28] AZZIMATO V, JAGER J, CHEN P, et al. Liver macrophages inhibit the endogenous antioxidant response in obesity-associated insulin resistance. Sci Transl Med. 2020;12(532):eaaw9709. [29] 张翠翠,谢玲,孙文萍.枸杞多糖调节Nrf2/HO-1/GPX4铁死亡途径对妊娠期糖尿病大鼠胰岛素抵抗的改善作用[J].中成药,2024, 46(2):626-630. [30] MERRY TL, MACRAE C, PHAM T, et al. Deficiency in ROS-sensing nuclear factor erythroid 2-like 2 causes altered glucose and lipid homeostasis following exercise training. Am J Physiol Cell Physiol. 2020;318(2):C337-C345. [31] YALOW RS, BERSON SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39(7):1157-1175. [32] HUANG HC, NGUYEN T, PICKETT CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277(45):42769-42774. [33] EVANS JL, GOLDFINE ID, MADDUX BA, et al. Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes. Endocr Rev. 2002;23(5):599-622. [34] HOUSTIS N, ROSEN ED, LANDER ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440(7086):944-948. [35] BEYER TA, WERNER S. The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver. Cell Cycle. 2008;7(7):874-878. [36] YU Z, SHAO W, CHIANG Y, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54(4):922-934. [37] 宁梦丽,丁文军,张芳.Nrf2抵抗胰岛β细胞氧化损伤的作用机制[J].中国科学院大学学报,2015, 32(3):301-308. [38] 罗琳,张缨.AMPK与氧化应激及其与运动关系的研究进展[J].中国体育科技,2017,53(4):125-130. [39] PARK SY, CHOI MH, LI M, et al. AMPK/Nrf2 signaling is involved in the anti-neuroinflammatory action of Petatewalide B from Petasites japonicus against lipopolysaccharides in microglia. Immunopharmacol Immunotoxicol. 2018;40(3):232-241. [40] 刘玉倩,张静,高丽娜,等.有氧运动对高糖高脂膳食大鼠腓肠肌Nrf2-SOD的影响[J].中国应用生理学杂志,2020,36(5):481-485. [41] 平烨,张珮雯,袁馨梦,等.运动调节Nrf2/HO-1通路改善HFFC膳食诱导肝细胞氧化应激的作用研究[J].中国实验动物学报,2024, 32(5):566-575. [42] 李俊,冯丽洁,刘一平.有氧运动对2型糖尿病大鼠血管炎症及Nrf2/ARE信号通路的影响[J].免疫学杂志,2019,35(2):179-184. [43] LIU Y, CHENG Y, XIANG N, et al. Aerobic exercise improves BKCa channel-mediated vasodilation in diabetic vascular smooth muscle via AMPK/Nrf2/HO-1 pathway. Acta Diabetol. 2024;61(4):425-434. [44] 孔海军,张亮,熊伟,等.游泳运动可能通过调控Nrf2/HO-1/Keap1通路改善尼古丁胁迫大鼠肝损伤 [J].山东体育学院学报,2023, 39(6):110-118. [45] 张磊,严玉,刘崟,等.8周有氧运动改善肥胖诱导心肌纤维化过程中核因子E2相关因子2通路的作用[J].中国组织工程研究,2021, 25(17):2650-2656. [46] ZOU Y, CHEN Z, SUN C, et al. Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci. 2021;22(20):10940. [47] ABREU CC, CARDOZO LFMF, STOCKLER-PINTO MB, et al. Does resistance exercise performed during dialysis modulate Nrf2 and NF-κB in patients with chronic kidney disease? Life Sci. 2017;188:192-197. [48] 税晓平,李春莹,李明娟,等.有氧和抗阻运动干预2型糖尿病模型大鼠海马抗氧化应激指标和脑源性神经营养因子表达的变化[J].中国组织工程研究,2023,27(2):264-269. [49] TKACHEV VO, MENSHCHIKOVA EB, ZENKOV NK. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Mosc). 2011;76(4):407-422. [50] 姚娟,吴平安,李芸,等.Keap1-Nrf2-ARE信号通路及其激活剂的研究进展[J].中国药理学通报,2019,35(10):1342-1346. [51] 王蒙,张海峰.高强度间歇运动通过调控Nrf2/ARE和NF-κB信号通路调节高脂饮食诱导肥胖大鼠的氧化应激和炎症反应[J].基因组学与应用生物学,2020,39(5):2324-2331. [52] EBRAHIMNEZHAD N, NAYEBIFAR S, SOLTANI Z, et al. High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: The role of the PGC1α-Keap1-Nrf2 signaling pathway. Iran J Basic Med Sci. 2023;26(11): 1313-1319. [53] 郭新明,吴丽君,赵静,等.虾青素补充与急性大强度运动对机体Nrf2抗氧化通路影响的研究[J]. 山东体育学院学报,2020,36(6): 111-118. [54] 吴毅.不同运动模式训练对糖调节受损老年人胰岛素敏感性和体能的影响[J].西南师范大学学报(自然科学版),2018,43(8):83-91. [55] LI J, CHENG W, MA H. A Comparative Study of Health Efficacy Indicators in Subjects with T2DM Applying Power Cycling to 12 Weeks of Low-Volume High-Intensity Interval Training and Moderate-Intensity Continuous Training. J Diabetes Res. 2022;2022:9273830. [56] FISHER G, GOWER BA, OVALLE F, et al. Acute Effects of Exercise Intensity on Insulin Sensitivity under Energy Balance. Med Sci Sports Exerc. 2019;51(5):988-994. [57] GOLDSTEIN BJ, MAHADEV K, WU X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes. 2005;54(2):311-321. [58] RAINS JL, JAIN SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567-575. [59] 宋林阳,胡依萌,徐焱成,等.胰岛素抵抗的再认识[J].中华糖尿病杂志,2022,14(12):1341-1347. [60] KEVIN NOEL K, VINICIUS FERNANDES C, RODRIGO C, et al. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. Oxid Med Cell Longev. 2015;2015:181643. [61] 熊款款,谭磊,王爱兵,等.Keap1-Nrf2/ARE信号通路抗氧化机制及抗氧化剂的研究进展[J].动物医学进展,2021,42(4):89-94. [62] 鄂晓迪,赵晓南,赵金标,等.黄酮类化合物调控Keap1-Nrf2/ARE信号通路的抗氧化机制及其在畜禽生产中应用的研究进展[J].中国畜牧兽医,2024,51(7):2880-2889. [63] 曾梦莹,马晓丽.基于Keap1-Nrf2/ARE信号通路研究牛磺酸对胰岛素抵抗模型大鼠氧化应激的影响[J].中国现代应用药学,2020, 37(22):2703-2707. [64] 王海涛,杨雯茜,刘玉倩.有氧运动对高脂膳食小鼠心肌损伤中Nrf2/GPX4/Ferroptosis通路的作用 [J].中国应用生理学杂志,2022, 38(2):143-148. [65] O’ROURKE SA, SHANLEY LC, DUNNE A. The Nrf2-HO-1 system and inflammaging. Front Immunol. 2024;15:1457010. [66] DRUMMOND GS, BAUM J, GREENBERG M, et al. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys. 2019;673:108073. [67] FATHI R, NASIRI K, AKBARI A, et al. Exercise protects against ethanol-induced damage in rat heart and liver through the inhibition of apoptosis and activation of Nrf2/Keap-1/HO-1 pathway. Life Sci. 2020; 256:117958. [68] MALLARD AR, SPATHIS JG, COOMBES JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160: 471-479. [69] FANG X, WANG H, HAN D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-2680. [70] LI D, JIANG C, MEI G, et al. Quercetin Alleviates Ferroptosis of Pancreatic β Cells in Type 2 Diabetes. Nutrients. 2020;12(10):2954. [71] MAYNERIS-PERXACHS J, MORENO-NAVARRETE JM, FERNÁNDEZ-REAL JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol. 2022;18(11):683-698. [72] 冯艳,于泉,宋新娜,等.多囊卵巢综合征合并妊娠期糖尿病患者铁代谢与胰岛素抵抗的关系[J]. 中华内分泌外科杂志,2020,14(2): 161-165. [73] GAO G, XIE Z, LI EW, et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med. 2021;75(3):540-552. [74] LI J, LU K, SUN F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med. 2021;19(1):96. [75] ZHANG DL, WU J, SHAH BN, et al. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science (New York, NY). 2018;359(6383):1520-1523. [76] 张知宜,王学艺,李冰,等.基于Nrf2/FPN1信号通路探究活血地龟汤对糖尿病肾病小鼠肾脏足细胞铁积累和铁死亡的影响[J].中国中医药信息杂志,2024,31(12):105-111. [77] FRENDO-CUMBO S, TOKARZ VL, BILAN PJ, et al. Communication Between Autophagy and Insulin Action: At the Crux of Insulin Action-Insulin Resistance? Front Cell Dev Biol. 2021;9:708431. [78] LI H, LIU S, YUAN H, et al. Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res. 2017;354(1):18-24. [79] LI H, ZHOU B, XU L, et al. The reciprocal interaction between autophagic dysfunction and ER stress in adipose insulin resistance. Cell Cycle. 2014;13(4):565-579. [80] LU Z, REN Y, YANG L, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B. 2021;11(5):1246-1260.
[81] 梁佳,彭辉,宗尤佳,等.Nrf2与自噬在皮肤损伤中的调控作用[J].中国皮肤性病学杂志,2024,38(9):1047-1052.
[82] CACCAMO A, FERREIRA E, BRANCA C, et al. Retraction Note: p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry. 2021;26(7):3664. [83] JOSHI G, GAN KA, JOHNSON DA, et al. Increased Alzheimer’s disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015; 36(2):664-679. [84] 谢昆,李密杰,蒋成砚,等.自噬相关蛋白ATG5/BECLIN-1调控细胞自噬和凋亡的分子机理研究进展[J].中国人兽共患病学报, 2018,34(3):272-275,85. [85] 林品捷,林晨晗,龚瑾,等.自噬相关蛋白5对氧-糖剥夺/复氧损伤的心肌细胞线粒体自噬的影响 [J].中华高血压杂志(中英文), 2024,32(8):737-745. [86] TANG Z, HU B, ZANG F, et al. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis. 2019;10(7):510. [87] SAITO Y, YAKO T, OTSU W, et al. A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radic Biol Med. 2020; 152:235-247. [88] 吴贞慧,王鸿苗,李静怡,等.苍术素通过ROS/Nrf2/HO-1信号通路诱导肺癌细胞凋亡和自噬[J]. 中国病理生理杂志,2024,40(11): 2050-2058. [89] SHEN J, WANG X, WANG M, et al. Potential molecular mechanism of exercise reversing insulin resistance and improving neurodegenerative diseases. Front Physiol. 2024;15:1337442. [90] SUJKOWSKI A, HONG L, WESSELLS RJ, et al. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev. 2022; 74:101543. [91] CHENG F, DUN Y, CHENG J, et al. Exercise activates autophagy and regulates endoplasmic reticulum stress in muscle of high-fat diet mice to alleviate insulin resistance. Biochem Biophys Res Commun. 2022;601:45-51. [92] PIRANI H, SOLTANY A, HOSSEIN REZAEI M, et al. Lactate-induced autophagy activation: unraveling the therapeutic impact of high-intensity interval training on insulin resistance in type 2 diabetic rats. Sci Rep. 2024;14(1):1108. [93] SHEN B, WANG Y, CHENG J, et al. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine. 2023;109:154561. [94] LIU Y, CHENG Y, XIANG N, et al. Aerobic exercise improves BK(Ca) channel-mediated vasodilation in diabetic vascular smooth muscle via AMPK/Nrf2/HO-1 pathway. Acta Diabetol. 2024;61(4):425-434. [95] 贾绍辉,刘君,寇现娟,等.运动诱导的细胞自噬对小鼠心肌的保护作用[J].武汉体育学院学报,2014,48(10):53-56. [96] LI H, MENG Y, HE S, et al. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells. 2022;11(19):3001. [97] 庞雅芬,黄明,李琳,等.丹蒌片降低db/db小鼠肝脏脂肪生成及炎症反应改善胰岛素抵抗的作用研究[J].中国中药杂志,2022, 47(12):3320-3327. [98] DING YY, FANG Y, PAN Y, et al. Orally administered octacosanol improves liver insulin resistance in high-fat diet-fed mice through the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway. Food Funct. 2023;14(2):769-786. [99] AKASH MSH, REHMAN K, LIAQAT A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105-110. [100] CHEN L, CHEN R, WANG H, et al. Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol. 2015;2015:508409. [101] THOMAS MS, CALLE M, FERNANDEZ ML. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv Nutr. 2023;14(1):44-54. [102] YARIBEYGI H, FARROKHI FR, BUTLER AE, et al. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6): 8152-8161. [103] BAGHERNIYA M, MAHDAVI A, ABBASI E, et al. The effects of phytochemicals and herbal bio-active compounds on tumour necrosis factor-α in overweight and obese individuals: a clinical review. Inflammopharmacology. 2022;30(1):91-110. [104] KOENEN TB, STIENSTRA R, VAN TITS LJ, et al. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes. 2011;60(2):517-524. [105] BÖNI-SCHNETZLER M, DONATH MY. How biologics targeting the IL-1 system are being considered for the treatment of type 2 diabetes. Br J Clin Pharmacol. 2013;76(2):263-268. [106] HIRANO T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127-148. [107] MARTINEZ D, PALMER C, SIMAR D, et al. Characterisation of the cytokine milieu associated with the up-regulation of IL-6 and suppressor of cytokine 3 in chronic hepatitis C treatment non-responders. Liver Int. 2015;35(2):463-472. [108] 许光远,张晓明,贾春玲.桑叶黄酮对糖尿病小鼠胰岛素抵抗及炎症反应的作用机制[J].中国实验方剂学杂志,2023,29(16):52-57. [109] GASPARRINI M, AFRIN S, FORBES-HERNÁNDEZ TY, et al. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem Toxicol. 2018;120: 578-587. [110] AHMED SM, LUO L, NAMANI A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(2):585-597. [111] 陶艺文,许利荣,胡友,等.木犀草素通过激活GSK3β/Nrf2通路抑制感染性炎症反应的研究[J]. 上海中医药杂志,2024,58(9):61-69. [112] WANG Z, WANG L, LUO J, et al. Protection against acute renal injury by naturally occurring medicines which act through Nrf2 signaling pathway. J Food Biochem. 2021;45(1):e13556. [113] CUADRADO A, ROJO AI, WELLS G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295-317. [114] SAHIN K, PALA R, TUZCU M, et al. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147-154. [115] CHEN Y, MIAO Z, SHENG X, et al. Sesquiterpene lactones-rich fraction from Aucklandia lappa Decne. alleviates dextran sulfate sodium induced ulcerative colitis through co-regulating MAPK and Nrf2/Hmox-1 signaling pathway. J Ethnopharmacol. 2022;295:115401. [116] 仲启明,仝立国,赵华杰,等.异虎耳草素通过调控Nrf2-NF-κB通路轴减轻松果体损伤大鼠氧化应激和炎症反应[J].免疫学杂志, 2024,40(3):234-241. [117] 赵娜,沈梦迪,赵睿,等.血根碱通过调控Nrf2/NF-κB通路缓解小鼠溃疡性结肠炎[J].南方医科大学学报,2024,44(8):1467-1475. [118] 王春淼,李玉洁,李晶晶,等.参莲提取物通过调控Nrf2/Keap1信号通路减轻TNF-α诱导的ECV304损伤[J].中国中药杂志,2021, 46(13):3402-3409. [119] 韩延歌,孟宇竹,王丽娜.柴胡活性物质联合有氧运动对肥胖大鼠的治疗作用及其机制[J].分子植物育种,2024,22(16):5501-5509. [120] ZHANG W, DUN Y, YOU B, et al. Trimetazidine and exercise offer analogous improvements to the skeletal muscle insulin resistance of mice through Nrf2 signaling. BMJ Open Diabetes Res Care. 2022; 10(2):e002699. [121] 雷槟恺,李顺昌,高德润,等.Nrf2/HO-1通路在有氧运动干预2型糖尿病大鼠骨骼肌氧化应激中的作用[J].中国康复医学杂志, 2022,37(3):289-295. [122] 陈晓勇,李洁华,赵丽花,等.有氧运动通过Keap1Nrf2HO-1通路对睡眠障碍老年大鼠认知的改善机制[J].医学研究与战创伤救治, 2024,37(2):125-129. [123] ISLAM H, BONAFIGLIA JT, TURNBULL PC, et al. The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol. 2020;120(1):149-160. [124] ZHU X, REN T, XIONG Q, et al. Salidroside alleviates diet-induced obesity and insulin resistance by activating Nrf2/ARE pathway and enhancing the thermogenesis of adipose tissues. Food Sci Nutr. 2023;11(8):4735-4744. [125] TAN Y, ZHOU C, MIAO L, et al. 3,4’,5-Trimethoxy-trans-stilbene ameliorates hepatic insulin resistance and oxidative stress in diabetic obese mice through insulin and Nrf2 signaling pathways. Food Funct. 2024;15(6):2996-3007. [126] LI Z, XU W, SU Y, et al. Nicotine induces insulin resistance via downregulation of Nrf2 in cardiomyocyte. Mol Cell Endocrinol. 2019; 495:110507. [127] WEI J, HAO Q, CHEN C, et al. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle. Theranostics. 2020;10(20):9230-9248. |
[1] | 李加根, 陈跃平, 黄柯琪, 陈尚桐, 黄川洪. 线粒体自噬视域下的类风湿关节炎:多机器学习算法构建预测模型及验证并免疫调控分析[J]. 中国组织工程研究, 2025, 29(在线): 1-15. |
[2] | 赵济宇, 王少伟. 叉头框转录因子O1信号通路与骨代谢[J]. 中国组织工程研究, 2025, 29(9): 1923-1930. |
[3] | 董婷婷, 陈天鑫, 李 妍, 张 晟, 张 磊. 可干预因素与关节运动损伤的因果关系[J]. 中国组织工程研究, 2025, 29(9): 1953-1962. |
[4] | 刘 琳, 刘世轩, 陆馨悦, 王 侃. 慢性肌筋膜触发点模型大鼠的尿液代谢组学分析[J]. 中国组织工程研究, 2025, 29(8): 1585-1592. |
[5] | 李花园, 李 春, 刘君伟, 王 亭, 李 龙, 武永利. 温针灸干预慢性疲劳综合征大鼠骨骼肌PINK1/Parkin通路的变化[J]. 中国组织工程研究, 2025, 29(8): 1618-1625. |
[6] | 周盼盼, 崔应麟, 张文涛, 王姝瑞, 陈佳慧, 杨 潼. 细胞自噬在脑缺血损伤中的作用及中药调控机制[J]. 中国组织工程研究, 2025, 29(8): 1650-1658. |
[7] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[8] | 朱汉民, 王 松, 肖文琳, 张文静, 周 茜, 何 烨, 李 微, . 线粒体自噬调控骨代谢[J]. 中国组织工程研究, 2025, 29(8): 1676-1683. |
[9] | 张孜贤, 徐有粮, 吴绍奎, 王相英. 血流限制训练法联合抗阻训练对运动者肌肉相关指标影响的Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1705-1713. |
[10] | 王 娟, 王广兰, 左会武. 运动疗法对前交叉韧带重建后康复疗效影响的网状Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1714-1726. |
[11] | 郑华坤, 殷明越, 刘 骞. 间歇与持续训练对体力活动不足成人生活质量影响的Meta分析[J]. 中国组织工程研究, 2025, 29(8): 1727-1740. |
[12] | 娄 国, 张 敏, 付常喜. 8周运动预适应增强脂肪干细胞治疗心肌梗死大鼠的效果[J]. 中国组织工程研究, 2025, 29(7): 1363-1370. |
[13] | 郑荣发, 莫伟彬, 黄 鹏, 陈俊吉, 梁 婷, 资方宇, 李国峰. 电针对运动大鼠腓肠肌组织代谢酶及自噬基因表达的影响[J]. 中国组织工程研究, 2025, 29(6): 1127-1136. |
[14] | 陈玉宁, 蒋 颖, 廖翔宇, 陈琼君, 熊 亮, 刘 悦, 刘 通. 补气活血合剂干预脑缺血再灌注模型大鼠相关因子及自噬蛋白的表达[J]. 中国组织工程研究, 2025, 29(6): 1152-1158. |
[15] | 贺光辉, 原 杰, 柯燕琴, 丘小婷, 张晓玲. Hemin调控小鼠软骨细胞氧化应激的线粒体途径[J]. 中国组织工程研究, 2025, 29(6): 1183-1191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||