[1] RUSU D, STRATUL SI, CALNICEANU H, et al. A qualitative and semiquantitative SEM study of the morphology of the biofilm on root surfaces of human teeth with endodontic-periodontal lesions. Exp Ther Med. 2020;20(6):201.
[2] LARSEN T, FIEHN NE. Dental biofilm infections-an update. APMIS. 2017; 125(4):376-384.
[3] RICUCCI D, LOGHIN S, NIU LN, et al. Changes in the radicular pulp-dentine complex in healthy intact teeth and in response to deep caries or restorations: A histological and histobacteriological study. J Dent. 2018;73:76-90.
[4] BRYNIARSKA-KUBIAK N, BASTA-KAIM A, KUBIAK A. Mechanobiology of Dental Pulp Cells. Cells. 2024;13(5):375.
[5] CĂLIN C, SAJIN M, MOLDOVAN VT, et al. Immunohistochemical expression of non-collagenous extracellular matrix molecules involved in tertiary dentinogenesis following direct pulp capping: a systematic review. Ann Anat. 2021;235:151674.
[6] DONNELLY A, FOSCHI F, MCCABE P, et al. Pulpotomy for treatment of complicated crown fractures in permanent teeth: A systematic review. Int Endod J. 2022;55(4):290-311.
[7] CUSHLEY S, DUNCAN HF, LUNDY FT, et al. Outcomes reporting in systematic reviews on vital pulp treatment: A scoping review for the development of a core outcome set. Int Endod J. 2022;55(9):891-909.
[8] DASTPAK M, GHODDUSI J, JAFARIAN AH, et al. Association between Clinical Symptoms and Histological Features of Molars with Acute Pulpitis. Iran Endod J. 2023;18(2):91-95.
[9] BARBOSA VM, PITONDO-SILVA A, OLIVEIRA-SILVA M, et al. Antibacterial Activity of a New Ready-To-Use Calcium Silicate-Based Sealer. Braz Dent J. 2020;31(6):611-616.
[10] RUIZ-LINARES M, DE OLIVEIRA FAGUNDES J, SOLANA C, et al. Current status on antimicrobial activity of a tricalcium silicate cement. J Oral Sci. 2022;64(2):113-117.
[11] PAULA A, LARANJO M, MARTO CM, et al. Biodentine™ Boosts, WhiteProRoot®MTA Increases and Life® Suppresses Odontoblast Activity. Materials (Basel). 2019;12(7):1184.
[12] HOLIEL AA, MAHMOUD EM, ABDEL-FATTAH WM, et al. Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig. 2021;25(4): 2101-2112.
[13] HUANG L, CHEN X, YANG X, et al. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J Biomed Mater Res B Appl Biomater. 2024;112(5):e35412.
[14] XIN T, GU Y, CHENG R, et al. Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS Appl Mater Interfaces. 2017;9(47):41168-41180.
[15] PARANDHAMAN T, CHOUDHARY P, RAMALINGAM B, et al. Antibacterial and Antibiofouling Activities of Antimicrobial Peptide-Functionalized Graphene-Silver Nanocomposites for the Inhibition and Disruption of Staphylococcus aureus Biofilms. ACS Biomater Sci Eng. 2021;7(12):5899-5917.
[16] KIEW SF, KIEW LV, LEE HB, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J Control Release. 2016;226:217-228.
[17] ZHOU Y, YANG Y, LIU R, et al. Research Progress of Polydopamine Hydrogel in the Prevention and Treatment of Oral Diseases. Int J Nanomedicine. 2023;18:2623-2645.
[18] XU H, GU S, RIQUELME MA, et al. Connexin 43 channels are essential for normal bone structure and osteocyte viability. J Bone Miner Res. 2015;30(3):436-448.
[19] BONACQUISTI EE, NGUYEN J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett. 2019;442:439-444.
[20] NASER AL DEEN N, ABOUHAIDAR M, TALHOUK R. Connexin43 as a Tumor Suppressor: Proposed Connexin43 mRNA-circularRNAs-microRNAs Axis Towards Prevention and Early Detection in Breast Cancer. Front Med (Lausanne). 2019;6:192.
[21] YIN J, XU J, CHENG R, et al. Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair. Int J Oral Sci. 2021;13(1):1.
[22] DELVAEYE T, VANDENABEELE P, BULTYNCK G, et al. Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends Mol Med. 2018;24(12):1036-1053.
[23] LONG P, XIONG L, DING C, et al. Connexin43 reduces LPS-induced inflammation in hDPCs through TLR4-NF-κB pathway via hemichannels. Oral Dis. 2024;30(5):3239-3249.
[24] 张安妮,丁灿灿,黄丽苹,等.抑制连接蛋白43介导半通道活性促进脂多糖诱导的人牙髓细胞成牙本质分化[J].上海口腔医学, 2024,33(1):22-29.
[25] MOHAMMED EEA, BEHEREI HH, EL-ZAWAHRY M, et al. Osteogenic enhancement of modular ceramic nanocomposites impregnated with human dental pulp stem cells: an approach for bone repair and regenerative medicine. J Genet Eng Biotechnol. 2022;20(1):123.
[26] ZHANG CY, CHENG YL, TONG XW, et al. In Vitro Cytotoxicity of Self-Adhesive Dual-Cured Resin Cement Polymerized Beneath Three Different Cusp Inclinations of Zirconia. Biomed Res Int. 2019;2019: 7404038.
[27] 何文喜,余擎.牙髓炎的活髓保存及再生治疗新进展:从基础到临床[J].中华口腔医学杂志,2022,57(1):16-22.
[28] KURIAN AG, SINGH RK, PATEL KD, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2021;8:267-295.
[29] WANG Y, LI H, FENG Y, et al. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int J Nanomedicine. 2019;14:963-976.
[30] YUE K, TRUJILLO-DE SANTIAGO G, ALVAREZ MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271.
[31] PEPELANOVA I, KRUPPA K, SCHEPER T, et al. Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering (Basel). 2018;5(3):55.
[32] SHIRAHAMA H, LEE BH, TAN LP, et al. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci Rep. 2016;6:31036.
[33] FERNANDEZ CC, SOKOLONSKI AR, FONSECA MS, et al. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci. 2021;22(5):2485.
[34] TĂRĂBOANȚĂ I, BURLEC AF, STOLERIU S, et al. Influence of the Loading with Newly Green Silver Nanoparticles Synthesized Using Equisetum sylvaticum on the Antibacterial Activity and Surface Hardness of a Composite Resin. J Funct Biomater. 2023;14(8):402.
[35] LUCERI A, FRANCESE R, LEMBO D, et al. Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms. 2023;11(3):629.
[36] WANG J, ZHENG W, CHEN L, et al. Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomater Sci Eng. 2019;5(5):2444-2456.
[37] ZHIHUI K, MIN D. Application of Graphene Oxide-Based Hydrogels in Bone Tissue Engineering. ACS Biomater Sci Eng. 2022;8(7):2849-2857.
[38] BAN G, HOU Y, SHEN Z, et al. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine. 2023;18:1695-1708.
[39] LI XP, QU KY, ZHOU B, et al. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces. 2021;205:111844.
[40] ZHOU K, YU P, SHI X, et al. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS Nano. 2019;13(8):9595-9606.
[41] CHEN J, FAN L, YANG C, et al. Facile synthesis of Ag nanoparticles-loaded chitosan antibacterial nanocomposite and its application in polypropylene. Int J Biol Macromol. 2020;161:1286-1295.
[42] LI Y, ZHANG Y, DONG Y, et al. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. Adv Mater. 2023;35(22): e2210464.
[43] 薛俊杰,李婧瑜,张莉,等.缝隙连接蛋白43在骨关节炎软骨及细胞中表达及shRNA慢病毒载体的构建[J].中国组织工程研究, 2020,24(23):3627-3635.
[44] 赵丹,魏碧玉,高明龙.星形胶质细胞缝隙连接蛋白43在痛觉敏化中作用机制研究进展[J].武警医学,2020,31(4):357-360.
[45] TARZEMANY R, JIANG G, JIANG JX, et al. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci Rep. 2017;7(1):14157.
[46] LI S, HE H, ZHANG G, et al. Connexin43-containing gap junctions potentiate extracellular Ca²⁺-induced odontoblastic differentiation of human dental pulp stem cells via Erk1/2. Exp Cell Res. 2015;338(1):1-9.
[47] LIU H, YANG Y, LIU Y, et al. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. Adv Sci (Weinh). 2020;7(7):1903129.
[48] SARFRAZ S, MÄNTYNEN PH, LAURILA M, et al. Comparison of Titanium and PEEK Medical Plastic Implant Materials for Their Bacterial Biofilm Formation Properties. Polymers (Basel). 2022;14(18):3862.
[49] HELIAWATI L, LESTARI S, HASANAH U, et al. Phytochemical Profile of Antibacterial Agents from Red Betel Leaf (Piper crocatum Ruiz and Pav) against Bacteria in Dental Caries. Molecules. 2022;27(9):2861.
[50] SAKARYALı UYAR D, ÜSKÜDAR GÜÇLÜ A, ÇELIK E, et al. Evaluation of probiotics’ efficiency on cariogenic bacteria: randomized controlled clinical study. BMC Oral Health. 2024;24(1):886.
|