中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (27): 5802-5809.doi: 10.12307/2025.836

• 数字化骨科 digital orthopedics • 上一篇    下一篇

胫骨内侧应力在跑步运动过程中的计算机仿真分析

孙  媛1,杨  晨2,3,马运超1   

  1. 1北京师范大学,体育与运动学院,北京市   100875;2山东体育学院,运动与健康学院,山东省济南市   250100;3曲阜师范大学,体育科学学院,山东省曲阜市   273100
  • 收稿日期:2024-07-12 接受日期:2024-08-24 出版日期:2025-09-28 发布日期:2025-03-05
  • 通讯作者: 马运超,博士,副教授,北京师范大学,体育与运动学院,北京市 100875
  • 作者简介:孙媛,女,2000年生,江苏省镇江市人,汉族,北京师范大学在读硕士,主要从事运动生物力学与虚拟仿真、有限元分析及运动损伤预防方面的研究。
  • 基金资助:
    教育部人文社会科学研究青年项目《数据驱动的高校体育智慧体育教学平台的构建和应用研究》(19YJC890030),项目负责人:马运超;北京市社会科学基金《数字技术赋能北京市全民健身公共服务高质量发展的机理和路径研究》(22YTB009),项目负责人:马运超

Computer simulation analysis of medial tibial stress during running

Sun Yuan1, Yang Chen2, 3, Ma Yunchao1   

  1. 1College of PE and Sports, Beijing Normal University, Beijing 100875, China; 2College of Sports and Health, Shandong Sport University, Jinan 250100, Shandong Province, China; 3College of Physical Education and Sports Science, Qufu Normal University, Qufu 273100, Shandong Province, China
  • Received:2024-07-12 Accepted:2024-08-24 Online:2025-09-28 Published:2025-03-05
  • Contact: Ma Yunchao, MD, Associate professor, College of PE and Sports, Beijing Normal University, Beijing 100875, China
  • About author:Sun Yuan, Master candidate, College of PE and Sports, Beijing Normal University, Beijing 100875, China
  • Supported by:
    Ministry of Education Humanities and Social Sciences Research Youth Project, No. 19YJC890030 (to MYC); Beijing Social Science Fund, No. 22YTB009 (to MYC)

摘要:

文题释义:

骨肌仿真:指建立肌肉模型后,利用计算机进行模拟计算,尝试获取运动中肌肉的工作特征(如肌力、肌肉代谢等)的方法,这种模拟计算结果取决于肌肉模型的复杂度和可靠性,目前广泛使用的肌肉模型为诺贝尔奖获得者A.V.希尔于1938年开发出的三元素肌肉模型,也称Hill模型。
有限元仿真:是一种数值仿真技术,先尝试将要仿真的对象通过3D扫描等形式生成计算机模型,但直接计算的复杂度和成本过高。将模型网格化,分解为大量的小模型并求解其在特定工况下的应变或应力,最终将小模型的计算结果组合起来以获得模型整体的计算结果。

摘要
背景:内侧胫骨应力综合征是困扰跑步者的一种常见的下肢慢性损伤,其损伤机制可能与“肌肉牵引”假说有关,然而这种假说还没有得到完全的证实。
目的:使用肌骨仿真系统和有限元分析等方法,考察比目鱼肌、胫骨后肌、趾长屈肌在跑步过程中的收缩特征是否与跑步时胫骨内侧缘的应力水平存在相关性,从而影响内侧胫骨应力综合征的发生与发展。
方法:将6名受试者不同速度跑步时的动作捕捉数据输入Anybody Modeling System骨肌仿真系统,对2.5,3.5,4.5 m/s三种跑步速度情况下的步态支撑期进行逆动力学仿真,将仿真得到的边界条件与有限元模型结合,考察胫骨内侧的应力分布情况。使用偏最小二乘回归方法分析自变量(肌力、弹性势能)与因变量(胫骨应力)之间的相关性。
结果与结论:①胫骨应力水平在支撑期(1%-50%)存在速度间的统计学差异(P=0.044,F=3.834,ηp2 =0.040);②3种速度下,比目鱼肌的肌力与胫骨应力之间的平均相关性最高(r=12.999),其次胫骨后肌肌力与胫骨应力的平均相关性排名第二(r=-10.735),然后依次是趾长屈肌肌力(r=-9.751),胫骨后肌弹性势能(r=8.012),比目鱼肌弹性势能(r=9.076),趾长屈肌弹性势能(r=-4.782);③结果表明,跑步速度的增加,胫骨应力水平随之上升;比目鱼肌的收缩及吸收的弹性势能在跑步过程中的释放对于内侧胫骨应力综合征的发展将产生不可忽略的影响,而胫骨后肌和趾长屈肌的作用被高估了;综合来看,研究支持了“肌肉牵引”假说中比目鱼肌的收缩对内侧胫骨应力综合征发展发挥作用的推论。

关键词: 胫骨应力综合征, 生物力学仿真, 内侧胫骨应力综合征, anybody modeling system, Abaqus, 有限元分析

Abstract: BACKGROUND: Medial tibial stress syndrome is a common chronic lower limb injury among runners, potentially linked to the “muscle traction theory.” However, this hypothesis has not been fully confirmed. 
OBJECTIVE: To investigate whether the contraction characteristics of the soleus, posterior tibialis, and flexor digitorum longus muscles during running are correlated with stress levels at the medial tibial border and influence the occurrence and development of medial tibial stress syndrome using musculoskeletal simulation systems and finite element analysis. 
METHODS: Motion capture data of six subjects running at different speeds were input into the Anybody Modeling System for inverse dynamic simulations during the stance phase at running speeds of 2.5, 3.5, and 4.5 m/s. The calculated boundary conditions were combined with finite element models to examine the stress distribution on the medial tibia. Partial least squares regression was used to analyze the correlation between independent variables (muscle force and elastic potential energy) and the dependent variable (tibial stress). 
RESULTS AND CONCLUSION: (1) There were statistically significant differences in tibial stress levels across different speeds during the stance phase (1%-50%) (P=0.044, F=3.834, ηp2=0.040). (2) Among the three speeds, the average correlation between soleus muscle force and tibial stress was the highest (r=12.999), followed by the correlation between posterior tibialis muscle force and tibial stress (r=-10.735), flexor digitorum longus muscle force (r=-9.751), posterior tibialis elastic potential energy (r=8.012), soleus elastic potential energy (r=9.076), and flexor digitorum longus elastic potential energy (r=-4.782). (3) The results indicate that with increasing running speed, tibial stress levels rise. The contraction of the soleus muscle and the release of absorbed elastic potential energy during running have a significant impact on the development of medial tibial stress syndrome, whereas the roles of the posterior tibialis and flexor digitorum longus muscles have been overestimated. Overall, the study supports the hypothesis that the contraction of the soleus muscle plays a crucial role in the development of medial tibial stress syndrome, consistent with the “muscle traction” hypothesis.

Key words: tibial stress syndrome, biomechanical simulation, medial tibial stress syndrome, anybody modeling system, Abaqus, finite element analysis

中图分类号: