中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (3): 426-432.doi: 10.12307/2023.982
• 生物材料综述 biomaterial review • 上一篇 下一篇
王欣怡1,谢宪瑞2,陈玉杰1,王晓宇1,徐小青1,沈怿弘1,莫秀梅1
收稿日期:
2022-10-09
接受日期:
2023-02-17
出版日期:
2024-01-28
发布日期:
2023-07-10
通讯作者:
莫秀梅,博士,教授,硕士生导师,博士生导师,上海纳米生物材料与再生医学研究中心,东华大学,生物与医学工程学院,上海市 201600
作者简介:
王欣怡,女,2000年生,江苏省淮安市人,汉族,东华大学在读硕士,主要从事静电纺丝应用于组织再生的研究。
谢宪瑞,滨州医学院,药学院,“方剂效应与临床评价”国家中医药管理局重点研究室,山东省滨州市 256600
Wang Xinyi1, Xie Xianrui2, Chen Yujie1, Wang Xiaoyu1, Xu Xiaoqing1, Shen Yihong1, Mo Xiumei1
Received:
2022-10-09
Accepted:
2023-02-17
Online:
2024-01-28
Published:
2023-07-10
Contact:
Mo Xiumei, MD, Professor, Master’s supervisor, Doctoral supervisor, School of Biological and Medical Engineering, Donghua University, Shanghai Nanobiomaterials and Regenerative Medicine Research Center, Shanghai 201600, China
About author:
Wang Xinyi, Master candidate, School of Biological and Medical Engineering, Donghua University, Shanghai Nanobiomaterials and Regenerative Medicine Research Center, Shanghai 201600, China
Xie Xianrui, Key Laboratory of “Prescription Effect and Clinical Evaluation” State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Binzhou 256600, Shandong Province, China
摘要:
文题释义:
电纺纳米纤维支架:是用静电纺丝法制备的由纳米纤维丝交织而成的组织再生用支架材料,为膜状、管状及块状等,用于皮肤、血管、神经、肌腱、骨和软骨等的组织再生。
背景:目前,静电纺丝纳米纤维是天然细胞外基质的仿生材料,其包含互连孔隙的三维网络,已成功用作各种组织再生的支架,但目前仍面临着如何将生物材料扩展成三维结构以再现组织微环境的生理、化学以及机械性能的挑战。
目的:总结归纳静电纺丝的工艺、原理,探讨由此生产的静电纺丝纳米纤维在皮肤、血管、神经、骨骼、软骨和肌腱/韧带等组织再生中的应用。结果与结论:①静电纺丝纳米纤维是天然纤维状细胞外基质的仿生材料,并包含互连孔隙的三维网络,在各种组织再生的支架领域中应用较多。②多篇文献阐述了电纺纳米支架应用于皮肤、血管、神经、骨骼、软骨和肌腱/韧带组织再生的巨大潜力,为其最终应用于临床疾病治疗,或转化为实际产品进入市场提供了坚实的理论基础。③但目前的研究成果多是基于体外的细胞实验研究成果,能否最终应用于人体尚需临床验证。④目前国内外已有多种用于各种临床需求的电纺产品商业化,表明用于软组织和硬组织再生的电纺纳米纤维支架研究领域具有重大的研究价值和应用潜力。
https://orcid.org/0000-0001-9238-6171(莫秀梅)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王欣怡, 谢宪瑞, 陈玉杰, 王晓宇, 徐小青, 沈怿弘, 莫秀梅. 软组织和硬组织再生过程中的电纺纳米纤维支架[J]. 中国组织工程研究, 2024, 28(3): 426-432.
Wang Xinyi, Xie Xianrui, Chen Yujie, Wang Xiaoyu, Xu Xiaoqing, Shen Yihong, Mo Xiumei. Electrospun nanofiber scaffolds for soft and hard tissue regeneration[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 426-432.
[1] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298-5415. [2] YANG F, MURUGAN R, RAMAKRISHNA S, et al. Fabrication of nano-structured porous PLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25(10):1891-1900. [3] NIECE KL, HARTGERINK JD, DONNERS JM, et al. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc. 2003;125(24):7146-7147. [4] CARIM AI, HAMANN KR, BATARA NA, et al. Template-free synthesis of periodic three-dimensional PbSe nanostructures via photoelectrodeposition. J Am Chem Soc. 2018;140(21): 6536-6539. [5] MACCALLAN AF. Threading of needles. Br J Ophthalmol. 1934;18(1):54. [6] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-347. [7] LI D, XIA Y. Electrospinning of nanofibers: reinventing the wheel. Adv Mater. 2004;16(14): 1151-1170. [8] LIAO Y, LOH CH, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment:Fabrication, modification and applications. Prog Polym Sci. 2018;77:69-94. [9] LIU G, GU Z, HONG Y, et al. Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release. 2017;252: 95-107. [10] JIANG L, JIANG Y, STIADLE J, et al. Electrospun nanofibrous thermoplastic polyurethane/poly (glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C. 2019;94:740-749. [11] ZHANG YS, XIA Y. Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine. 2015;10(5):689-692. [12] HUSSEY GS, DZIKI JL, BADYLAK SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3(7):159-173. [13] LIM CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1-17. [14] CHEN FM, LIU X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86-168. [15] TANG D, TARE RS, YANG LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363-382. [16] GUIGNARD C . Process for the manufacture of a plurality of filaments. US Patent, No. 4230650. 1980. [17] LARRONDO L, ST JOHN MANLEY R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed. 1981;19(6):909-920. [18] SUN Z, ZUSSMAN E, YARIN AL, et al. Compound core-shell polymer nanofibers by co-electrospinning. Adv. Mater. 2003;15(22):7992-8001. [19] XU X, ZHUANG X, CHEN X, et al. Preparation of core‐sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun. 2006;27(19):1637-1642. [20] TEO WE, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer. 2007;48(12):3400-3405. [21] ALI U, ZHOU Y, WANG X, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text Inst. 2012;103(1):80-88. [22] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun. 2014;5(1):5802. [23] WU J, LIU S, HE L, et al. Electrospun nanoyarn scaffold and its application in tissue engineering. Mater Lett. 2012;89:146-149. [24] WU J, HUANG C, LIU W, et al. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J Biomed Nanotechnol. 2014;10(4):603-614. [25] PIEZ KA, REDDI AH. Extracellular matrix biochemistry. Elsvier Science Publishing Co., Inc., New York. 1984. [26] NISHIDA T, YASUMOTO K, OTORI T, et al. The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Visual Sci. 1988;29(12):1887-1890. [27] KIM BS, MOONEY DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Tibtechnol. 1998;16:224. [28] PATTISON MA, WURSTERS, Webster TJ, et al. Three-dimensional, nano-structured PLA-PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26(15):2491-2500. [29] ELIAS KL, PRICE RL, WEBSTER TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials. 2002;23:3279-3287. [30] STEVENS MM, GEORGE JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135-1138. [31] WANG Y, FU C, WU Z, et al. A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydr Polym. 2017;174:723-730. [32] BAO L, YANG W, MAO X, et al. Agar/collagen membrane as skin dressing for wounds. Biomed Mater. 2008;3(4):044108. [33] YU PJ, GUO JA, LI JJ, et al. Repair of skin defects with electrospun collagen/chitosan and fibroin/chitosan compound nanofiber scaffolds compared with gauze dressing. J Biomater Tissue Eng. 2017;7(5):386-392. [34] LI D, GAO Y, WANG Y, et al. Evaluation of biocompatibility and immunogenicity of micro/nanofiber materials based on tilapia skin collagen. J Biomater Appl. 2019;33(8):1118-1127. [35] MA L, ZHANG D, YANG X, et al. Cirsium Japonicum DC ingredients-loaded silk fibroin nanofibrous matrices with excellent hemostatic activity. Biomed Phys Eng Express. 2018;4(2):025035. [36] ZHOU T, SUI B, MO X, et al. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomed. 2017;12:3495-3507. [37] YU H, CHEN X, CAI J, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem Eng J. 2019;369:253-262. [38] BROWNING MB, DEMPSEY D, GUIZA V, et al. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 2012;8(3):1010-1021. [39] DESMET W, VANHAECKE J, VROLIX M, et al. Isolated single coronary artery: a review of 50 000 consecutive coronary angiographies. Eur Heart J. 1992;13(12):637-1640. [40] HUANG C, WANG S, QIU L, et al. Heparin loading and pre-endothelialization in enhancing the patency rate of electrospun small-diameter vascular grafts in a canine model. ACS Appl Mater Interfaces. 2013;5(6):2220-2226. [41] CHEN X, WANG J, AN Q, et al. Electrospun poly (l-lactic acid-co-ɛ-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf BBiointerfaces. 2015;128:106-114. [42] YIN A, ZHANG K, MCCLURE MJ, et al. Electrospinning collagen/chitosan/poly (L‐lactic acid‐co‐ϵ‐caprolactone) to form a vascular graft: mechanical and biological characterization. J Biomed Mater Res A. 2013;101(5):1292-1301. [43] WU T, JIANG B, WANG Y, et al. Electrospun poly (l-lactide-co-caprolactone)-collagen-chitosan vascular graft in a canine femoral artery model. J Mater Chem B. 2015;3(28):5760-5768. [44] KUANG H, WANG Y, HU J, et al. A method for preparation of an internal layer of artificial vascular graft co-modified with Salvianolic acid B and heparin. ACS Appl Mater Interfaces. 2018;10(23):19365-19372. [45] WU T, ZHANG J, WANG Y, et al. Development of dynamic liquid and conjugated electrospun poly(L-lactide-co-caprolactone)/collagen nanoyarns for regulating vascular smooth muscle cells growth. J Biomed Nanotechnol. 2017;13(3):303-312. [46] WU T, ZHANG JL, WANG YF, et al. Design and fabrication of a biomimetic vascular scaffold promoting in situ endothelialization and tunica media regeneration. ACS Appl Bio Mater. 2018;1:833-844. [47] WU T, ZHANG JL, WANG YF, et al. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;82:121-129. [48] XIE J, MACEWAN MR, LIU W, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces. 2014;6(12):9472-9480. [49] GU X, DING F, WILLIAMS DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143-6156. [50] ZHANG K, WANG H, HUANG C, et al. Fabrication of silk fibroin blended P (LLA‐CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A. 2010;93(3):984-993. [51] WANG CY, ZHANG KH, FAN CY, et al. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 2011;7(2):634-643. [52] ZHANG KH, WANG CY, FAN CY, et al. Aligned SF-P (LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(8):2680-2691. [53] ZHANG J, QIU K, SUN B, et al. The aligned core-sheath nanofibers with electrical conductivity for neural tissue engineering. J Mater Chem B. 2014;2(45):7945-7954. [54] SUN B, WU T, WANG J, et al. Polypyrrole-coated poly (l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B. 2016;4(41):6670-6679. [55] LI D, PAN X, SUN B, et al. Nerve conduits constructed by electrospun P (LLA-CL) nanofibers and PLA nanofiber yarns. J Mater Chem B. 2015;3(45):8823-8831. [56] WU T, LI D, WANG Y, et al. Laminin-coated nerve guidance conduits based on poly (l-lactide-co-glycolide) fibers and yarns for promoting Schwann cells’ proliferation and migration. J Mater Chem B. 2017;5(17):3186-3194. [57] SUN B, ZHOU Z, WU T, et al. Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo. ACS Appl Mater Interfaces. 2017;9(32):26684-26696. [58] BERNER A, REICHERT JC, MÜLLER MB, et al. Treatment of long bone defects and non-unions:from research to clinical practice. Cell Tissue Res. 2012;347:501-519. [59] LIU W, ZHANG J, RETHORE G, et al. A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta biomater. 2014;10(7):3335-3345. [60] LANGER RS, VACANTI JP. Tissue engineering:the challenges ahead. Sci Am. 1999;280(4):86-89. [61] SHAO S, ZHOU S, LI L, et al. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials. 2011;32(11):2821-2833. [62] CUI W, ZHOU Y, CHANG J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2010;11(1):014108. [63] WEINER S, WAGNER HD. The material bone:structure-mechanical function relations. Annu Rev Mater Sci. 1998;28(1):271-298. [64] RAJZER I, MENASZEK E, KWIATKOWSKI R, et al. Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;44:183-190. [65] YE K, LIU D, KUANG H, et al. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci. 2019;534:625-636. [66] WANG Y, CUI W, ZHAO X, et al. Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale. 2019;11(1):60-71. [67] GUTIÉRREZ-SÁNCHEZ M, ESCOBAR-BARRIOS VA, POZOS-GUILLÉN A, et al. RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;96:798-806. [68] KO E, LEE JS, KIM H, et al. Electrospun silk fibroin nanofibrous scaffolds with two-stage hydroxyapatite functionalization for enhancing the osteogenic differentiation of human adipose-derived mesenchymal stem cells. ACS Appl Mater Interfaces. 2017;10(9):7614-7625. [69] MARINS NH, LEE BEJ, SILVA RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf B Biointerfaces. 2019;182:110386. [70] NUKAVARAPU SP, DORCEMUS DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31(5):706-721. [71] ZHANG S, CHEN L, JIANG Y, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9(7):7236-7247. [72] CHEN W, CHEN S, MORSI Y, et al. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces. 2016;8(37):24415-24425. [73] CHEN Y, XU W, SHAFIQ M, et al. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. J Colloid Interf Sci. 2021;603:94-109. [74] CHEN Y, XU W, SHAFIQ M, et al. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Biomater Adv. 2022;134:112643. [75] CHEN W, XU Y, LIU Y, et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des. 2019;179:107886. [76] YIN H, WANG J, GU Z, et al. Evaluation of the potential of kartogenin encapsulated poly (L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. J Biomater Appl. 2017;32(3):331-341. [77] BASS E. Tendinopathy: why the difference between tendinitis and tendinosis matters. Int J Ther Massage Bodywork. 2012;5(1):14. [78] LJUNGQVIST A, SCHWELLNUS MP, BACHL N, et al. International Olympic committee consensus statement:molecular basis of connective tissue and muscle injuries in sport. Clin. Sports Med. 2008;27(1):231-239. [79] OLENDER E, UHRYNOWSKA-TYSZKIEWICZ I, KAMINSKI A, et al. Revitalization of biostatic tissue allografts: new perspectives in tissue transplantology. Transplant Proc. 2011;43(8):3137-3141. [80] YANG G, LIN H, ROTHRAUFF BB, et al. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 2016;35:68-76. [81] RINOLDI C, KIJEŃSKA E, CHLANDA A, et al. Nanobead-on-string composites for tendon tissue engineering. J Mater Chem. 2018;6(19):3116-3127. [82] LARANJEIRA M, DOMINGUES RMA, COSTA-ALMEIDA R, et al. 3D mimicry of native‐tissue‐fiber architecture guides tendon‐derived cells and adipose stem cells into artificial tendon constructs. Small. 2017;13(31):1700689. [83] ZHANG C, WANG X, ZHANG E, et al. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater. 2018;66:141-156. [84] SENSINI A, CRISTOFOLINI L. Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials. 2018;11(10):1963. [85] LINDERMAN SW, GOLMAN M, GARDNER TR, et al. Enhanced tendon-to-bone repair through adhesive films. Acta Biomater. 2018;70:165-176. [86] MADHURAKKAT PERIKAMANA SK, LEE J, AHMAD T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an invitro tissue interface mimicking tendon-bone insertion graft. Biomaterials. 2018;165:79-93. [87] XIE X, CAI J, YAO Y, et al. A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Compos part B-Eng. 2021;212:108679. [88] LI X, CHENG R, SUN Z, et al. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta biomater. 2017;61:204-216. |
[1] | 谷明西, 王常成, 田丰德, 安 宁, 郝瑞胡, 郭 林. 丝素蛋白/明胶/壳聚糖三维多孔软骨组织支架的制备及体外评价[J]. 中国组织工程研究, 2024, 28(3): 366-372. |
[2] | 许晓东, 周骥平, 张 琦, 冯 辰, 朱勉顺, 史宏灿. 明胶/氧化纳米纤维素高弹性模量高孔隙皮肤支架的3D打印工艺[J]. 中国组织工程研究, 2024, 28(3): 398-403. |
[3] | 王新民, 闫文凯, 宋亚辉, 刘 飞. 自体富白细胞-血小板纤维蛋白凝胶与腘绳肌腱修复创伤性髌骨脱位[J]. 中国组织工程研究, 2024, 28(3): 404-410. |
[4] | 毕玉杰, 马笃军, 彭力平, 周紫琼, 赵 静, 朱厚均, 钟秋辉, 杨玉鑫. 中医药联合医用水凝胶治疗疾病的策略及意义[J]. 中国组织工程研究, 2024, 28(3): 419-425. |
[5] | 龙俊东, 史业弘, 王 成, 陈世玖. 不同冷冻技术对同种异体血管移植排斥反应的影响[J]. 中国组织工程研究, 2024, 28(3): 433-438. |
[6] | 高雪钰, 张文涛, 孙天泽, 张 警, 李忠海. 金属离子在骨组织工程中的应用[J]. 中国组织工程研究, 2024, 28(3): 439-444. |
[7] | 杨 杰, 胡浩磊, 李 硕, 岳 玮, 徐 弢, 李 谊. 3D打印生物墨水在组织修复与再生医学中的应用[J]. 中国组织工程研究, 2024, 28(3): 445-451. |
[8] | 陈品叡, 裴锡波, 薛轶元. 磁响应水凝胶在骨组织工程中的作用与优势[J]. 中国组织工程研究, 2024, 28(3): 452-457. |
[9] | 龙智睿, 黄 雷, 肖 放, 王 琳, 王晓蓓. 骨组织工程中研究水凝胶微球的特征[J]. 中国组织工程研究, 2024, 28(3): 472-478. |
[10] | 孔祥宇, 王 兴, 裴志伟, 常家乐, 李斯琴, 郝 廷, 何万雄, 张葆鑫, 贾燕飞. 生物支架材料及打印技术修复骨缺损[J]. 中国组织工程研究, 2024, 28(3): 479-485. |
[11] | 徐 静, 吕慧欣, 鲍 鑫, 张 逸, 王一涵, 周延民. 近红外光响应水凝胶在组织工程领域的应用[J]. 中国组织工程研究, 2024, 28(3): 486-492. |
[12] | 代新语, 闫纪红, 华凌军, 郑晓鸿. 抗阻运动改善超重肥胖人群身体成分:一项伞形综述[J]. 中国组织工程研究, 2024, 28(2): 267-271. |
[13] | 孟志成, 乔卫平, 赵 阳, 刘洪飞, 李凯杰, 马 博. 免疫细胞及相关细胞因子在骨关节炎发病及治疗中的作用[J]. 中国组织工程研究, 2024, 28(2): 280-287. |
[14] | 龙 宜, 杨佳明, 叶 花, 钟燕彪, 王茂源. 细胞外囊泡在少肌性肥胖中的作用及机制[J]. 中国组织工程研究, 2024, 28(2): 315-320. |
[15] | 龙清熙, 张萍淑, 刘 青, 欧 亚, 张丽丽, 元小冬. 单细胞RNA测序揭示星形胶质细胞的异质性[J]. 中国组织工程研究, 2024, 28(1): 139-146. |
1.1.6 检索策略 以PubMed数据库检索策略为例,见图1。
1.1.7 检索文献量 初步检索出文献1 024 篇,其中来自中国知网数据库的中文文献14 篇,PubMed和谷歌学术数据库的英文文献1 010 篇。
1.3 文献质量评估及数据的提取 初步检索文献数为1 024篇,排除与研究内容不相关且陈旧、质量较低的文献,最终纳入符合标准的88 篇来自PubMed和谷歌学术数据库英文文献进行综述,见图2。
#br#
文题释义:
电纺纳米纤维支架:是用静电纺丝法制备的由纳米纤维丝交织而成的组织再生用支架材料,为膜状、管状及块状等,用于皮肤、血管、神经、肌腱、骨和软骨等的组织再生。纤维对人类来说并不陌生。天然纤维来自植物和动物,包括棉、麻、羊毛和丝,已经使用了上千年。随着现代复合材料的出现,合成纤维逐渐流行起来。它们被持续大范围使用,包括每天的消费产品、环境应用、过滤系统以及保护设备。近年来,不同的构建方法出现用来制备纤维,例如相分离、自组装以及模板合成。然而,这些方法受到其技术复杂性、成本、产量和控制所得纤维规模的能力的限制。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||