中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (26): 4231-4238.doi: 10.12307/2023.564
• 组织构建综述 tissue construction review • 上一篇 下一篇
周 晶1,伍潇潇1,刘 婉2,3,4,魏 蒙2,3,4,吴 淼2,3,4,郑 岚1
收稿日期:2022-08-31
接受日期:2022-10-14
出版日期:2023-09-18
发布日期:2023-01-28
通讯作者:
郑岚,湖北中医药大学,湖北省武汉市 430065
作者简介:周晶,男,1980年生,湖北省武汉市人,湖北中医药大学针灸推拿学博士,副主任医师,主要从事推拿在康复医学领域中的应用研究。
基金资助:Zhou Jing1, Wu Xiaoxiao1, Liu Wan2, 3, 4, Wei Meng2, 3, 4, Wu Miao2, 3, 4, Zheng Lan1
Received:2022-08-31
Accepted:2022-10-14
Online:2023-09-18
Published:2023-01-28
Contact:
Zheng Lan, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
About author:Zhou Jing, MD, Professor, Associate chief physician, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
Supported by:摘要:
文题释义:
瘦素:是一种由白色脂肪组织分泌的蛋白质荷尔蒙,编码基因ob,位于人类的第七号染色体上,由167个氨基酸构成,大小为16 kD。瘦素具有广泛的生物学效应,早期研究发现其主要作用于下丘脑的代谢调节中枢,发挥抑制食欲、增加能量消耗、抑制脂肪合成的作用,现研究发现其还具有参与调控炎症反应、免疫稳态、软骨和骨代谢、血管生成、造血(血细胞的形成)、细胞增殖等多个进程。结果与结论:①瘦素对骨关节中主要组织效应细胞起到调控作用,影响骨关节炎的发生发展。②瘦素对软骨中的细胞外基质主要起到分解作用,对软骨细胞发挥促炎、抑制自噬、诱导衰老、诱导凋亡、双相调节增殖的作用。③瘦素诱导成骨细胞增殖与分化、抑制破骨细胞活性与增殖,影响软骨下骨骨重塑,导致骨赘的形成。④瘦素对滑膜巨噬细胞与成纤维细胞的调控主要在于介导骨关节炎炎症反应。⑤瘦素未来有望成为骨关节炎预后生物标记物及治疗的潜在靶点。
https://orcid.org/0000-0001-8336-7278(周晶)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
周 晶, 伍潇潇, 刘 婉, 魏 蒙, 吴 淼, 郑 岚. 瘦素对骨关节炎效应细胞的调控作用[J]. 中国组织工程研究, 2023, 27(26): 4231-4238.
Zhou Jing, Wu Xiaoxiao, Liu Wan, Wei Meng, Wu Miao, Zheng Lan. Modulatory effect of leptin on the effector cells of osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(26): 4231-4238.




| [1] 中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心(湘雅医院), 等. 中国骨关节炎诊疗指南(2021年版)[J]. 中华骨科杂志,2021,41(18):1291-1314. [2] FAVERO M, EL-HADI H, BELLUZZI E, et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology. 2017;56(10):1784-1793. [3] XIE J, WANG Y, LU L, et al. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev. 2021;70:101413. [4] RICHARD D, LIU Z, CAO J, et al. Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk. Cell. 2020;181(2):362-381.e28. [5] YAN M, ZHANG J, YANG H, et al. The role of leptin in osteoarthritis. Medicine. 2018;97(14):e0257. [6] MACDONALD I J, LIU S C, HUANG C C, et al. Associations between Adipokines in Arthritic Disease and Implications for Obesity. Int J Mol Sci. 2019;20(6):1505. [7] 龚凤英,吕枭锐. 瘦素的再认识[J].中华糖尿病杂志,2022,14(3):278-281. [8] MÜNZBERG H, SINGH P, HEYMSFIELD SB, et al. Recent advances in understanding the role of leptin in energy homeostasis. F1000Res. 2020;9: F1000 Faculty Rev-451. [9] SCOTECE M, MOBASHERI A. Leptin in osteoarthritis: Focus on articular cartilage and chondrocytes. Life Sci. 2015;140:75-78. [10] KU JH, LEE CK, JOO BS, et al. Correlation of synovial fluid leptin concentrations with the severity of osteoarthritis. Clin Rheumatol. 2009; 28(12):1431-1435. [11] KING LK, HENNEICKE H, SEIBEL MJ, et al. Association of adipokines and joint biomarkers with cartilage-modifying effects of weight loss in obese subjects. Osteoarthritis Cartilage. 2015;23(3):397-404. [12] GANDHI R, TAKAHASHI M, SMITH H, et al. The synovial fluid. adiponectin-leptin ratio predicts pain with knee osteoarthritis. Clin Rheumatol. 2010; 29(11):1223-1228. [13] ZHANG Y, PROENCA R, MAFFEI M, et al. Positional cloning of the mouse. obese gene and its human homologue. Nature. 1994;372(6505):425-432. [14] TARTAGLIA LA, DEMBSKI M, WENG X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell.1995;83(7):1263-1271. [15] LORD G M, MATARESE G, HOWARD JK, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897-901. [16] SANTOS-ALVAREZ J, GOBERNA R, SÁNCHEZ-MARGALET V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999;194(1):6-11. [17] DUCY P, AMLING M, TAKEDA S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2): 197-207. [18] GUALILLO O, EIRAS S, LAGO F, et al. Elevated serum leptin concentrations induced by experimental acute inflammation. Life Sci. 2000;67(20):2433-2441. [19] TIAN Z, SUN R, WEI H, et al. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophs Res Commun. 2002;298(3):297-302. [20] OTERO M, GOMEZ REINO JJ, GUALILLO O. Synergistic induction of nitric oxide synthase type II: in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5 chondrogenic cells. Arthritis Rheum. 2003; 48(2):404-409. [21] CONDE J, GOMEZ R, BIANCO G, et al. Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann Rheum Dis. 2011;70(3):551-559. [22] CONDE J, SCOTECE M, LÓPEZ V, et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann Rheum Dis. 2014;73(3):631-633. [23] DODD GT, DECHERF S, LOH K, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160(1-2):88-104. [24] XU J, BARTOLOME CL, LOW CS, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature. 2018;556(7702):505-509. [25] WANG P, LOH KH, WU M, et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020;583(7818):839-844. [26] KRATOFIL RM, SHIM HB, SHIM R, et al. A monocyte-leptin-angiogenesis pathway critical for repair post-infection. Nature. 2022;609(7925):166-173. [27] LIN TC, HUANG KW, LIU CW, et al. Leptin signaling axis specifically associates with clinical prognosis and is multifunctional in regulating cancer progression. Oncotarget. 2018;9(24):17210-17219. [28] OTERO M, LAGO R, LAGO F, et al. Leptin, from fat to inflammation: old questions and new insights. FEBS Lett. 2005;579(2):295-301. [29] MASUZAKI H, OGAWA Y, HOSODA K, et al. Glucocorticoid Regulation of Leptin Synthesis and Secretion in Humans: Elevated Plasma Leptin Levels in Cushing’s Syndrome1. J Clin Endocrinol Metab. 1997;82(8):2542-2547. [30] FAGGIONI R, FANTUZZI G, FULLER J, et al. IL-1β mediates leptin induction during inflammation. Am J Physiol-Reg I. 1998;274(1):R204-R208. [31] SARRAF P, FREDERICH RC, TURNER EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med. 1997;185(1):171-175. [32] TU C, HE J, WU B, et al. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine. 2019;113:1-12. [33] MONTEIRO L, PEREIRA JADS, PALHINHA L, et al. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol. 2019;106(3):703-716. [34] XIONG H, LI W, LI J, et al. Elevated leptin levels in temporomandibular joint osteoarthritis promote proinflammatory cytokine IL-6 expression in synovial fibroblasts. J Oral Pathol Med. 2019;48(3):251-259. [35] LAGO F, DIEGUEZ C, GÓMEZ-REINO J, et al. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 2007;18(3-4):313-325. [36] PÉREZ-PÉREZ A, SÁNCHEZ-JIMÉNEZ F, VILARIÑO-GARCÍA T, et al. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci. 2020;21(16):5887. [37] CORDERO-BARREAL A, GONZÁLEZ-RODRÍGUEZ M, RUIZ-FERNÁNDEZ C, et al. An Update on the Role of Leptin in the Immuno-Metabolism of Cartilage. Int J Mol Sci. 2021;22(5):2411. [38] 王春炅,张园,管又飞,等.瘦素在糖脂代谢中的调控作用[J].中国生物化学与分子生物学报,2009,25(10):896-902. [39] AZAMAR-LLAMAS D, HERNANDEZ-MOLINA G, RAMOS-AVALOS B, et al. Adipokine Contribution to the Pathogenesis of Osteoarthritis. Mediators Inflamm. 2017;2017:5468023. [40] JIANG M, HE J, SUN Y, et al. Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. Oxid Med Cell Longev. 2021;2021:7385160. [41] YUSUF E, NELISSEN RG, IOAN-FACSINAY A, et al. Association. between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010;69(4):761-765. [42] GRIFFIN TM, HUEBNER JL, KRAUS VB, et al. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 2009;60(10):2935-2944. [43] DUMOND H, PRESLE N, TERLAIN B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118-3129. [44] SIMOPOULOU T, MALIZOS KN, ILIOPOULOS D, et al. Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage. 2007;15(8):872-883. [45] VUOLTEENAHO K, KOSKINEN A, MOILANEN T, et al. Leptin levels are increased and its negative regulators, SOCS-3 and sOb-R are decreased in obese patients with osteoarthritis: a link between obesity and osteoarthritis. Ann Rheum Dis. 2012;71(11):1912-1913. [46] GANDHI R, TAKAHASHI M, SYED K, et al. Relationship between body habitus and joint leptin levels in a knee osteoarthritis population. J Orthop Res. 2010;28(3):329-333. [47] ABELLA V, SCOTECE M, CONDE J, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2): 100-109. [48] VERSINI M, JEANDEL PY, ROSENTHAL E, et al. Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev. 2014;13(9):981-1000. [49] WANG T, HE C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018;44:38-50. [50] SIEBUHR AS, PETERSEN KK, ARENDT-NIELSEN L, et al. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthritis Cartilage. 2014;22(1):44-50. [51] THEOCHARIS AD, SKANDALIS SS, GIALELI C, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4-27. [52] VERMA P, DALAL K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem. 2011;112(12):3507-3514. [53] CHEN Y, WU Y, SHI H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition. J Cell Mol Med. 2019;23(3):2136-2148. [54] MA F, LI G, YU Y, et al. MiR-33b-3p promotes chondrocyte proliferation and inhibits chondrocyte apoptosis and cartilage ECM degradation by targeting DNMT3A in osteoarthritis. Biochem Biophys Res Commun. 2019;519(2): 430-437. [55] ZHAO X, HUANG P, LI G, et al. Activation of the leptin pathway by high expression of the long form of the leptin receptor (Ob-Rb) accelerates chondrocyte senescence in osteoarthritis. Bone Joint Res. 2019;8(9):425-436. [56] SCOTECE M, CONDE J, LÓPEZ V, et al. Adiponectin and leptin: new targets in inflammation. Br J Pharmacol. 2014;114(1): 97-102. [57] FRANCISCO V, PINO J, ANGEL GONZALEZ-GAY M, et al. Adipokines and inflammation: is it a question of weight?. Br J Pharmacol. 2018;175(10): 1569-1579. [58] ILIOPOULOS D, MALIZOS KN, TSEZOU A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616-1621. [59] KOSKINEN A, VUOLTEENAHO K, NIEMINEN R, et al. Leptin enhances MMP-1, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients.Clin Exp Rheumatol. 2011;29(1):57-64. [60] BAO JP, CHEN WP, FENG J, et al. Leptin plays a catabolic role on articular cartilage. Mol Biol Rep. 2010;37(7):3265-3272. [61] LAGO R, GÓMEZ R, LAGO F, et al. Leptin beyond body weight regulation-current concepts concerning its role in immune function and inflammation. Cell Immunol. 2008;252(1-2):139-145. [62] ZHANG S, ZHANG Y, WANG Y, et al. Effects of Leptin on Differentiation and Proliferation of Chondrocytes. J Hard Tissue Biol. 2019;28(1):51-56. [63] FIGENSCHAU Y, KNUTSEN G, SHAHAZEYDI S, et al. Human articular chondrocytes express functional leptin receptors. Biochem Biophys Res Commun. 2001;287(1):190-197. [64] SU YP, CHEN CN, HUANG KC, et al. Leptin induces MMP1/13 and ADAMTS 4 expressions through bone morphogenetic protein-2 autocrine effect in human chondrocytes. J Cell Biochem. 2018;119(4):3716-3724. [65] GIARDULLO L, CORRADO A, MARUOTTI N, et al. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Immunopathol Pharmacol. 2021;35:20587384211015034. [66] LOESER RF. Systemic and local regulation of articular cartilage metabolism: where does leptin fit in the puzzle? Arthritis Rheum. 2003;48(11):3009-3012. [67] GOLDRING MB, GOLDRING SR. Osteoarthritis. J Cell Physiol. 2007;213(3): 626-634. [68] VUOLTEENAHO K, KOSKINEN A, MOILANEN E. Leptin - a link between obesity and osteoarthritis. applications for prevention and treatment. Basic Clin Pharmacol Toxicol. 2014;114(1):103-108. [69] CORTIAL D, GOUTTENOIRE J, ROUSSEAU CF, et al. Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthritis Cartilage. 2006;14(7):631-640. [70] CONDE J, SCOTECE M, LÓPEZ V, et al. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PloS One. 2012; 7(12):e52533. [71] GÓMEZ R, SCOTECE M, CONDE J, et al. Adiponectin and leptin increase IL-8 production in human chondrocytes. Ann Rheum Dis. 2011;70(11):2052-2054. [72] VUOLTEENAHO K, KOSKINEN A, KUKKONEN M, et al. Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage--mediator role of NO in leptin-induced PGE2, IL-6, and IL-8 production. Mediators Inflamm. 2009;2009:345838. [73] 王欢欢,王青,唐鹏,等.体外冲击波干预骨关节炎大鼠软骨细胞的增殖和自噬[J].中国组织工程研究,2023,27(2):252-257. [74] 运行,魏钰,魏民.瘦素对骨关节炎中软骨细胞线粒体自噬状态的影响[J].解放军医学院学报,2021,42(5):555-559. [75] HUANG ZM, DU SH, HUANG LG, et al. Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthritis Cartilage. 2016;24(7):1246-1253. [76] HÉRAUD F, HÉRAUD A, HARMAND MF. Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis. 2000;59(12):959-965. [77] WANG Y, XU Z, WANG J, et al. DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol Biosyst. 2016;12(3):721-728. [78] WEI Q. Apoptosis Activation and Autophagy Inhibition of Chondrocytes by Leptin by the Upregulation of LOXL3 in Osteoarthritis Pathogenesis. J Healthc Eng. 2022;2022:4026128. [79] HUANG Z, LI J, DU S, et al. Effects of UCP4 on the Proliferation and Apoptosis of Chondrocytes: Its Possible Involvement and Regulation in Osteoarthritis. PLOS ONE. 2016;11(3):e0150684. [80] SIMOPOULOU T, MALIZOS KN, ILIOPOULOS D, et al. Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage. 2007;15(8):872-883. [81] 汪洋.DUSP19通过NF-κB/MAPKs通路参与骨关节炎的机制研究[D].上海:第二军医大学,2017. [82] AIT ELDJOUDI D, CORDERO BARREAL A, GONZALEZ-RODRÍGUEZ M, et al. Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander?. Int J Mol Sci. 2022;23(5):2859. [83] STEPPAN CM, CRAWFORD DT, CHIDSEY-FRINK KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92(1-3):73-78. [84] CORNISH J, CALLON KE, BAVA U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002; 175(2):405-415. [85] ELMQUIST JK, STREWLER GJ. Physiology: do neural signals remodel bone?. Nature. 2005;434(7032):447-448. [86] MUTABARUKA MS, AOULAD AISSA M, DELALANDRE A, et al. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther. 2010;12(1):R20. [87] GORDELADZE JO, DREVON CA, SYVERSEN U, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85(4):825-836. [88] KALRA SP, DUBE MG, IWANIEC UT. Leptin increases osteoblast-specific osteocalcin release through a hypothalamic relay. Peptides. 2009;30(5): 967-973. [89] 陆鹏程,刘波,金圣杰,等.下丘脑:运动改善骨代谢的关键控制器[J].中国组织工程研究,2022,26(32):5201-5208. [90] TAKEDA S, ELEFTERIOU F, LEVASSEUR R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305-317. [91] FU L, PATEL MS, BRADLEY A, et al. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122(5):803-815. [92] XIE C, CHEN Q. Adipokines: New Therapeutic Target for Osteoarthritis?. Curr Rheumatol Rep. 2019;21(12):71. [93] MAO Z, ZHU Y, HAO W, et al. MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. IUBMB life. 2019;71(12):1916-1928. [94] MAGGI S, SIVIERO P, BROCCO E, et al. Vitamin D deficiency, serum leptin and osteoprotegerin levels in older diabetic patients: an input to new research avenues. Acta Diabetol. 2014;51(3):461-469. [95] BURGUERA B, HOFBAUER LC, THOMAS T, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology. 2001;142(8):3546-3553. [96] ARMAIZ-FLORES SA, KELLY NR, GALESCU OA, et al. Evaluating Weight Status and Sex as Moderators of the Association of Serum Leptin with Bone Mineral Density in Children and Adolescents. Horm Res Paediatr. 2017; 87(4):233-243. [97] 柏茂盛,薛凯文,赵建宁.5-HT对骨代谢作用机制的研究进展[J].医学研究生学报,2018,31(11):6. [98] YADAV VK, OURY F, SUDA N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976-989. [99] 曹建刚,陈德生.骨关节炎中的滑膜巨噬细胞作用与特点[J].中国组织工程研究,2020,24(29):4731-4736. [100] DUMOND H, PRESLE N, TERLAIN B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118-3129. [101] LOFFREDA S, YANG SQ, LIN HZ, et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12(1):57-65. [102] RASO GM, PACILIO M, ESPOSITO E, et al. Leptin potentiates IFN-gamma-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1. Br J Pharmacol. 2002;137(6):799-804. [103] DICKSON BM, ROELOFS AJ, ROCHFORD JJ, et al. The burden of metabolic syndrome on osteoarthritic joints. Arthritis Res Ther. 2019;21(1):289. [104] 叶小康,白自然,金敏丽,等.滑膜细胞在骨关节炎中的研究进展[J].生物化学与生物物理进展,2021,48(11):1282-1289. [105] WISE BL, SEIDEL MF, LANE NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34-46. [106] TAKANO S, UCHIDA K, INOUE G, et al. Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin Exp Immunol. 2017;190(2):235-243. [107] PEARSON MJ, HERNDLER-BRANDSTETTER D, TARIQ MA, et al. IL-6 secretion in osteoarthritis patients is mediated by chondrocyte-synovial fibroblast cross-talk and is enhanced by obesity. Sci Rep. 2017;7(1):3451. [108] YANG WH, LIU SC, TSAI CH, et al. Leptin induces IL-6 expression through OBRl receptor signaling pathway in human synovial fibroblasts. PloS One. 2013;8(9):e75551. [109] TONG KM, SHIEH DC, CHEN CP, et al. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-kappaB/p300 binding in human synovial fibroblasts. Cell Signal. 2008;20(8):1478-1488. [110] ZHENG W, ZHANG H, JIN Y, et al. Butein inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes and slows the progression of osteoarthritis in mice. Int Immunopharmacol. 2017;42:1-10. |
| [1] | 孙可欣, 曾今实, 李佳, 蒋海越, 刘霞. 力学刺激提高生物3D打印软骨构建物基质的形成[J]. 中国组织工程研究, 2023, 27(在线): 1-7. |
| [2] | 李晓敏, 田向东 , 谭冶彤 , 朱光宇 , 王荣田 , 王 剑 , 薛志鹏, 马 晟, 胡元一, 黄 叶, 丁天送. 骨质疏松性内侧室膝骨关节炎胫骨高位截骨后下肢力线及膝关节功能的变化[J]. 中国组织工程研究, 2023, 27(9): 1325-1329. |
| [3] | 黄林科, 韦林华, 蒋 捷, 刘 倩, 陈蔚蔚. 雌激素与跑台运动干预卵巢切除模型小鼠骨量和关节软骨的变化[J]. 中国组织工程研究, 2023, 27(8): 1166-1171. |
| [4] | 李 诚, 郑国爽, 蒯贤东, 于炜婷. 海藻酸盐支架修复关节软骨[J]. 中国组织工程研究, 2023, 27(7): 1080-1088. |
| [5] | 袁长深, 官岩兵, 李 哲, 容伟明, 廖书宁, 陈乐伟, 梅其杰, 段 戡. 骨关节炎坏死性凋亡关键基因的筛选与验证[J]. 中国组织工程研究, 2023, 27(5): 695-700. |
| [6] | 谷明西, 王 博, 田丰德, 安 宁, 郝瑞胡, 王常成, 郭 林. 同期和分期双侧全膝关节置换的早期疗效和安全性比较[J]. 中国组织工程研究, 2023, 27(4): 565-571. |
| [7] | 郭颖奇, 宫先旭, 张 岩, 肖 寒, 王 野, 谷文光. 半月板外突与髌股关节软骨损伤及骨髓病变:MRI半定量评分的评价[J]. 中国组织工程研究, 2023, 27(4): 600-605. |
| [8] | 张 辉, 王佳洋, 王 茜, 甘洪全, 王志强. 动态培养环境下透明质酸与国产多孔钽复合对软骨细胞功能的影响[J]. 中国组织工程研究, 2023, 27(3): 339-345. |
| [9] | 马 威, 庞 坚, 张洁帆, 许 坤, 王用玉, 张 旻, 陈 博, 石 瑛, 詹红生. 膝骨关节炎患者跌倒恐惧影响因素分析及列线图模型构建[J]. 中国组织工程研究, 2023, 27(29): 4690-4695. |
| [10] | 陈 财, 曾 平, 刘金富. 介导软骨细胞相关机制调控骨性关节炎的长链非编码RNA[J]. 中国组织工程研究, 2023, 27(29): 4729-4735. |
| [11] | 韦宗波, 苏允裕, 章晓云, 黄 为, 许 航, 刘荣发. 长链非编码RNA调控膝骨关节炎中软骨下骨稳态的作用与机制[J]. 中国组织工程研究, 2023, 27(29): 4736-4744. |
| [12] | 周广智, 邰东旭. 踝关节骨关节炎动物模型构建的研究与进展[J]. 中国组织工程研究, 2023, 27(29): 4745-4750. |
| [13] | 陈昌美, 曾宪春, 王荣品, 吴家红. X射线评价正常膝关节解剖学参数的性别及年龄差异[J]. 中国组织工程研究, 2023, 27(29): 4647-4651. |
| [14] | 黎少聪, 何 琪, 潘兆丰, 杨均政, 陈柏豪, 王海彬, 周 驰. Micro-CT评价铁超载影响膝骨关节炎模型小鼠软骨类组织的变化[J]. 中国组织工程研究, 2023, 27(29): 4658-4663. |
| [15] | 卢 钰, 向俊宜, 尹本敬, 保超宇, 毕 衡, 李骥征, 陈 帅, 何光雄, 李具宝. 斜扳手法治疗腰椎小关节滑膜嵌顿的有限元分析[J]. 中国组织工程研究, 2023, 27(27): 4271-4276. |
1.1.6 检索策略 以 PubMed 数据库为例,检索策略见图1。此外,还通过手动检索上述检索策略未纳入、但其内容与文章主题契合的文献和书籍。
1.4 资料整合 共检索到1 424篇文献,排除与研究目的不相关、重复性以及观点陈旧性文献,最终纳入110篇符合标准的文献进行综述,见图2。
文题释义:
瘦素:是一种由白色脂肪组织分泌的蛋白质荷尔蒙,编码基因ob,位于人类的第七号染色体上,由167个氨基酸构成,大小为16 kD。瘦素具有广泛的生物学效应,早期研究发现其主要作用于下丘脑的代谢调节中枢,发挥抑制食欲、增加能量消耗、抑制脂肪合成的作用,现研究发现其还具有参与调控炎症反应、免疫稳态、软骨和骨代谢、血管生成、造血(血细胞的形成)、细胞增殖等多个进程。瘦素是由一种由脂肪和软骨等组织产生的多效性肽激素,早期研究发现其主要作用于中枢系统,发挥能量代谢的效应。现研究发现瘦素还具有激素和细胞因子的双重作用,可作用于下丘脑中背内侧核,视前区、室旁核、腹侧内侧核、弓状核及下丘脑外区域,参与调控炎症反应、免疫稳态、软骨和骨代谢、骨形成、血管生成、伤口愈合、肠道营养吸收等多个进程。虽然骨关节炎的发病机制尚不清楚,但目前研究已证实瘦素与骨关节炎相关,其在骨关节炎的进展中发挥着重要作用。本文主要从骨关节炎受累关节组织角度,综述了瘦素对骨关节炎不同组织效应细胞的调控作用,旨在通过探析瘦素对骨关节炎软骨、软骨下骨、滑膜效应细胞的调控作用及机制,为以瘦素为靶点的骨关节炎相关研究提供思路与借鉴。
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||