中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (47): 7550-7555.doi: 10.3969/j.issn.2095-4344.2015.47.002

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

腓骨重建及小钛板固定下颌骨体部缺损的三维有限元分析

陈 彪,屈鹏飞,刘耀强,范戌辉,刘吉伦,杨 威   

  1. 河北医科大学第二医院口腔颌面外科,河北省石家庄市 050000
  • 收稿日期:2015-10-06 出版日期:2015-11-19 发布日期:2015-11-19
  • 通讯作者: 杨威,硕士,主任医师,教授,河北医科大学第二医院口腔颌面外科,河北省石家庄市050000
  • 作者简介:陈彪,男,1981年生,河北省张家口市人,汉族,2003年河北医科大学毕业,硕士,主治医师,研究方向为口腔颌面部肿瘤与术后缺损修复。
  • 基金资助:

    河北省卫生厅科研基金项目(20150256)

Fibula reconstruction and small titanium plate fixation for repair of mandibular body defects: a three-dimensional finite element analysis

Chen Biao, Qu Peng-fei, Liu Yao-qiang, Fan Xu-hui, Liu Ji-lun, Yang Wei   

  1. Department of Oral and Maxillofacial Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
  • Received:2015-10-06 Online:2015-11-19 Published:2015-11-19
  • Contact: Yang Wei, Master, Chief physician, Professor, Department of Oral and Maxillofacial Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
  • About author:Chen Biao, Master, Attending physician, Department of Oral and Maxillofacial Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
  • Supported by:

    the Scientific Research Program of Hebei Province Health Department, No. 20150256

摘要:

背景:临床研究中进行腓骨重建修复下颌骨缺损的力学研究是不现实的,而有限元分析法为下颌骨缺损修复重建的生物力学研究提供了新的方法。

目的:建立腓骨重建小钛板固定下颌骨体部缺损的三维有限元模型,对其进行生物力学分析。
方法:建立下颌骨体部缺损腓骨重建三维模型及内固定模型,在前牙、健侧第一磨牙、健侧第二磨牙加载    100 N咬合力,观察下颌骨模型重建前后的最大应力值和最大位移值情况,前牙加载和后牙加载下重建模型钛板、钛钉孔周围骨质的应力情况,前牙加载和后牙加载下腓骨前后端的最大位移值情况。
结果与结论:正常下颌骨的最大应力集中在髁突颈部。在重建模型中,最大应力集中在健侧髁突颈部,加载相同咬合力的情况下重建下颌骨的最大应力值均大于正常下颌骨的最大应力值,前牙加载最大应力值大于后牙加载。在每块钛板内侧的两钉孔之间应力值最大,下颌角部位的应力比较集中,加载侧近下颌骨缺损处前上方的第一颗钛钉为下颌骨残端钛钉的最大应力集中部位,近腓骨中段后下方钛钉为腓骨端钛钉的最大应力集中部位。下颌骨残端近缺损处以及腓骨中段上板处的钉孔周围皮质骨为最大应力集中部位,前牙加载时的最大应力大于后牙加载时的最大应力。腓骨在X轴上从上缘到下缘的位移值不断减少,在Y轴上从前下方及后端至中份的位移值逐渐减少,在Z轴上从前端到后端的位移值逐渐减少。腓骨前端的最大位移值在Z轴方向,后端的最大位移值在Y轴方向上,前牙加载时的最大位移值均较后牙加载时的最大位移值大。说明下颌角后上方钛板最易折断,应对其进行加固处理;钛钉尖端和颈部应力比较大,应选择双皮质钛钉;腓骨端和下颌骨残端钛钉和钛板的应力比较大,应重视其稳定性和固位性;前牙咬合时的应力大于后牙咬合时的应力,修复后应避免前牙咬合。
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 生物材料, 骨生物材料, 腓骨, 小钛板, 下颌骨体部缺损, 应力, 位移, 重建, 固定, 有限元分析

Abstract:

BACKGROUND: In clinic, the mechanical study about fibula reconstruction for the repair of mandibular bone defect is unrealistic; the finite element analysis, however, provides a new approach for the biomechanical study of mandibular reconstruction.

OBJECTIVE: To establish the three-dimensional finite element model of mandibular body defect under fibula reconstruction and small titanium plate fixation, and to analyze the biomechanical features.
METHODS: The three-dimensional model of mandibular body defect under fibula reconstruction and internal fixation was established. 100 N bite force was loaded on the anterior teeth, contralateral first molar and contralateral second molar, respectively. The maximum stress and maximum displacement before and after model reconstruction, the stress of bone tissues around the titanium plate and titanium screw holes under anterior and posterior loading, and the maximum displacement of the front and rear ends of the fibula under anterior and posterior loading were observed.
RESULTS AND CONCLUSION: The maximum stress of the normal mandible concentrated in the condylar neck. In the reconstructed models, the maximum stress concentrated in the contralateral condylar neck. Under the same bite force, the maximum stress value of the reconstructed mandibular model was greater than that of the normal mandible. The maximum stress value of the anterior teeth was greater than that of the posterior teeth. The stress value was maximal between two screw holes inside each titanium plate and almost concentrated in the mandibular angle. The maximum stress of the residual titanium screw of the mandible concentrated in the first titanium screw over the mandibular defect under loading, while the maximum stress of the titanium screw of the fibular end concentrated in the titanium screw below the mesial segment of the fibula. The cortical bone around the screw holes located at the residual end of the mandible near the defect area and the upper plate of the mesial segment of the fibula was the maximum stress concentrated site, and the maximum stress of anterior tooth loading was greater than that of the posterior tooth loading. The displacement values of the fibula gradually reduced from the upper edge to the lower edge in the X-axis, from the anterior and posterior ends to the middle part in the Y-axis, as well as from the anterior end to the posterior end in the Z-axis. The maximum displacement values of the anterior and posterior ends of the fibula were at the Z-axis and Y-axis, respectively. The maximum displacement value under anterior tooth loading was greater than that under posterior tooth loading. These results show that the titanium plate over the mandibular angle that is most easy to break should be reinforced. If the stress of titanium screw tip and neck is relatively large, double cortical titanium screw is preferred; if the stress of titanium screw and titanium plate at the fibula end and residual end of the mandible is relatively large, we should pay attention to their stability and fixation; if the stress of anterior tooth occlusion is greater than that of posterior tooth occlusion, anterior tooth occlusion should be avoided after repair.
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Fibula, Mandible, Stress, Physical, Tissue Engineering