中国组织工程研究 ›› 2010, Vol. 14 ›› Issue (3): 393-396.doi: 10.3969/j.issn.1673-8225.2010.03.004

• 组织工程神经材料 tissue-engineered nerve materials • 上一篇    下一篇

组织工程脊髓支架材料:聚乳酸-羟基乙酸最佳孔径的筛选

谢青松1,许信龙1,魏晓捷1,傅小君1,潘红松1,李立新2   

  1. 1慈溪市人民医院神经外科,浙江省慈溪市 315300;2南京医科大学第一附属医院神经外科,江苏省南京市 210029
  • 出版日期:2010-01-15 发布日期:2010-01-15
  • 作者简介:谢青松★,男,1978年生,浙江省慈溪市人,汉族,2002年南京医科大学毕业,硕士,主治医师,主要从事干细胞和组织工程修复中枢神经损伤方面的研究。qsxie@163.com
  • 基金资助:

    宁波市自然科学基金资助项目(2008A610093),课题名称“静脉移植骨髓间充质干细胞治疗大鼠脑梗塞的MRI检测和疗效观察研究”。

Tissue engineered spinal cord scaffold material: Optimal pore size of poly lactic-co-glycolic acid scaffolds

Xie Qing-song1, Xu Xin-long1, Wei Xiao-jie1, Fu Xiao-jun1, Pan Hong-song1, Li Li-xin2   

  1. 1 Department of Neurosurgery, Cixi Municipal People’s Hospital, Cixi 315300, Zhejiang Province, China; 2 Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing  210029, Jiangsu Province, China
  • Online:2010-01-15 Published:2010-01-15
  • About author:Xie Qing-song★, Mater, Attending physician, Department of Neurosurgery, Cixi Municipal People’s Hospital, Cixi 315300, Zhejiang Province, China qsxie@163.com.
  • Supported by:

    Ningbo Natural Science Foundation, No. 2008A610093*

摘要:

背景:细胞支架是细胞生长的载体,其孔径是影响组织工程脊髓疗效的重要因素之一。
目的:通过将神经干细胞与不同孔径的聚乳酸-羟基乙酸(poly lactic-co-glycolic acid,PLGA)支架体外复合培养,筛选确立组织工程脊髓支架材料的最佳孔径。
方法:取传第1代的神经干细胞悬液50 µL(细胞数1010 L-1),分别种植在孔径200~300 µm、400~500 µm的PLGA支架上复合培养7 d,得到两种组织工程脊髓。30只大鼠均建立脊髓损伤模型,造模后分为3组,分别在脊髓缺损处立即填塞上述两种组织工程脊髓,空白对照组在缺损处不进行材料移植。倒置相差显微镜及电镜下观察神经干细胞在PLGA支架中的生长增殖与分布,MTT检测两种组织工程脊髓所含神经干细胞的相对数量,采用BBB运动功能评分比较不同孔径的组织工程脊髓的移植疗效。
结果与结论:镜下神经干细胞在各孔径材料上均紧密贴附并增殖分化,组织相容性良好。共培养7 d后,孔径200~300 µm PLGA支架组、孔径400~500 µm PLGA支架组的吸光度值基本相似(P > 0.05),说明PLGA支架的孔径大小对培养的神经干细胞增殖数量无明显影响。移植第4周与空白对照组比较,孔径200~300 µm PLGA支架组、孔径400~500 µm PLGA支架组大鼠的神经功能均有不同程度恢复,BBB运动功能评分均明显升高(P < 0.05),且孔径200~300 µm的PLGA支架其移植效果更好。

关键词: 脊髓, 神经干细胞, 聚乳酸-羟基乙酸, 组织工程, 支架, 生物材料

Abstract:

BACKGROUND: Cytoskeleton is a carrier of cell growth, and its pore caliber is one of the most important factors to affect the curative effect of tissue engineered spinal cord.
OBJECTIVE: To explore the optimal pore size of poly lactic-co-glycolic acid (PLGA) scaffolds for tissue engineered spinal cord by in vitro culture of neural stem cells (NSCs) and various pore sizes of PLGA scaffolds.
METHODS: 50 µL (cell number 1010/L) NSCs suspension at passage 1 was separately seeded on 200-300 µm, 400-500 µm PLGA stent for 7 days. Two sorts of tissue engineered spinal cord were constructed in vitro. Thirty rat models of spinal cord injury were established, and then assigned to 3 groups. The detect sites of these models were filled with above-mentioned spinal cord immediately, but the blank control was not treated with any material. The cells growth and proliferation implanted on PLGA were observed by phase contrast microscope and scanning electron microscope. Relative number of NSCs in two tissue engineered spinal cords was measured by MTT assay. The effects of transplantation with tissue engineered spinal cord were evaluated by the BBB scale.
RESULTS AND CONCLUSION: Neural stem cells implanted on different pore size scaffolds were seen growing by phase contrast microscope and scanning electron microscope, with good histocompatibility. After 7-day coculture, absorbance was similar between 200-300 µm PLGA and 400-500 µm PLGA groups (P > 0.05). These indicated that the pore size had no effects on NSC number. At week 4 following transplantation, in the blank control group, neural function was recovered to different degrees in the 200-300 µm PLGA and 400-500 µm PLGA groups. BBB motor functional score was significantly increased (P < 0.05). The pore size of 200-300 µm utilized in fabricating tissue engineered spinal cord has the best transplantation effect as compared to others. 

中图分类号: