中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (26): 4240-4245.doi: 10.3969/j.issn.2095-4344.2017.26.024

• 生物材料综述 biomaterial review • 上一篇    下一篇

剪切应力对生长在微图案表面内皮细胞骨架排列、黏附、迁移和凋亡的影响

何红平,赵茜茜,李  彬,贡向辉
  

  1. 北京航空航天大学生物与医学工程学院生物力学与力生物学教育部重点实验室,北京市  100191
  • 收稿日期:2017-04-22 出版日期:2017-09-18 发布日期:2017-09-28
  • 通讯作者: 贡向辉,博士,硕士生导师,讲师,北京航空航天大学生物与医学工程学院生物力学与力生物学教育部重点实验室,北京市 100191
  • 作者简介:何红平,女,1990年生,河北省吴桥县人,汉族,北京航空航天大学生物与医学工程学院在读硕士,主要从事组织工程血管方面的研究。
  • 基金资助:
    国家自然科学基金(11172031)

Effects of shear stress on cytoskeleton alignment, adhesion, migration and apoptosis of endothelial cells on micropatterned substrates

He Hong-ping, Zhao Xi-xi, Li Bin, Gong Xiang-hui
  

  1. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
  • Received:2017-04-22 Online:2017-09-18 Published:2017-09-28
  • Contact: Gong Xiang-hui, M.D., Master’s supervisor, Lecturer, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
  • About author:He Hong-ping, Studying for master’s degree, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
  • Supported by:
    the National Natural Science Foundation of China, No. 11172031

摘要:

文章快速阅读:

 

文题释义:
剪切应力:物体由于外因(载荷、温度变化等)而变形时,在它内部任一截面(剪切面)的两方出现相互作用力,称为“内力”。内力的集度,即单位面积上受到的内力称为“应力”。应力可分解为垂直于截面(剪切面)的分量,称为“正应力”或“法向应力”;相切于截面(剪切面)的分量称为“剪切应力”。
生物材料表面微图形化:是利用微图形技术在生物材料表面构筑具有规则、有序结构的微图形化区域,或进一步改善微图形区域表面的物理化学性质,通过研究材料表面形貌和表面物理化学性质与生物相容性的关系,获得有利于细胞生长的有序化微环境。
 
背景:微纳米尺寸的表面修饰法为解决心血管植入物材料表面的内皮化问题提供了一个有效方法。剪切应力在心血管植入物内皮化过程中起着重要作用。
目的:综述剪切应力对生长在微图案表面上内皮细胞骨架排列、黏附、迁移和凋亡的影响。
方法:作者检索2002至2017年PubMed数据库和中国知网数据库关于剪切应力对生长在微图案表面上内皮细胞影响的文献,英文检索词为“micropattern,flow shear stress,endothelial cells”,中文检索词为“微米拓扑结构,微图案,剪切应力,内皮细胞”。
结果与结论:对生长在微图案表面的内皮细胞施加平行剪切应力,可促进微丝沿微图案长轴方向排列,促进内皮细胞沿剪切应力方向迁移,上调内皮细胞FAK的磷酸化水平,增强内皮细胞的黏附能力,并改善内皮细胞的活性。有研究认为平行剪切应力促进微管沿微图案长轴方向排列,另有研究认为平行剪切应力对微管排列无影响。有些文献发现垂直剪切应力破坏生长在微图案表面的内皮细胞的微丝和微管结构,减弱微丝和微管沿微图案长轴方向排列的程度,降低内皮细胞的黏附能力和细胞活性;有些文献发现垂直剪切应力未破坏生长在微图案表面内皮细胞骨架的结构与排列,仍能促进内皮细胞沿剪切应力方向的迁移。此外,剪切力大小影响内皮细胞的迁移,随着剪切应力的增大,生长在微图案表面上的内皮细胞沿剪切应力方向迁移的数量增多。

关键词: 生物材料, 材料相容性, 心血管植入物, 内皮细胞, 微图案, 剪切应力, 细胞骨架排列, 黏附, 迁移, 凋亡, 国家自然科学基金

Abstract:

BACKGROUND: Micro-nano-sized modification of the material surface provides an effective way to enhance the endothelialization of cardiovascular implants. Shear stress plays an important role in the endothelialization of cardiovascular implants.
OBJECTIVE: To review the effects of flow shear stress on endothelial cell cytoskeleton alignment, migration, adhesion and apoptosis on the micropatterned substrates.
METHODS: The author performed a retrieval of PubMed and CNKI databases from 2002 to 2017 to search literatures about the effects of shear stress on endothelial cells on the micropatterned substrates. The keywords were “micrometer topology, micropattern, flow shear stress, endothelial cells” in English and Chinese, respectively.
RESULTS AND CONCLUSION: The shear stress parallel to the long axis of the micropattern which is applied to the endothelial cells on micropatterned substrates promotes endothelial cell microfilaments alignment along the long axis direction of micropattern, strengthens endothelial cell migration along the flow direction, increases the level of FAK phosphorylation, enhances endothelial cell adhesion, and improves endothelial cell activity. However, there are some controversies on the effects of parallel shear stress on the microtubule arrangement of endothelial cells on micropatterned substrates. Some studies have reported that parallel shear stress promotes endothelial cell microtubules alignment along the long axis of micropatterns. But others have found that parallel shear stress has no effect on endothelial cell microtubule arrangement. There are different conclusions about the effects of shear stress perpendicular to the long axis of the micropattern on endothelial cells on the micropatterned substrates. Some literatures have found vertical shear stress destroys the structure of endothelial cell microfilaments and microtubules, weakens the degree of microfilaments and microtubules arranged along the long axis of micropatterns, and attenuates endothelial cell adhesion and cell activity. But some have found vertical shear stress does not destroy the structure and alignment of endothelial cell microfilaments and microtubules, and still can promote endothelial cell migration along the flow direction. The magnitude of shear force affects endothelial cell migration, and the number of endothelial cells on the micropatterned substrates migrating along the flow direction increases with the increasing intensity of shear stress

Key words: Endothelial Cells, Cytoskeleton, Cell Adhesion, Tissue Engineering

中图分类号: