[1]Cho-Lee GY, García-Díez EM, Nunes RA,et al.Review of secondary alveolar cleft repair.AnnMaxillofac Surg.2013; 3 (1):46-50.[2]Bergland O, Semb G, Abyholm FE. Elimination of the residual alveolar clefts by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J. 1986; 23(3):175-205.[3]黄迪炎,陈海龙.先天性唇腭裂治疗现状[J].实用医药杂志, 2003, 20(1):68-70.[4]毛萌,朱军.出生缺陷监测研究现状[J].实用儿科临床杂志, 2009, 24(11):801-803.[5]Erverdi N, Usumez S,Solak A, et al. Noncompliance open-bite treatment with zygomatic anchorage.Angle Orthod.2007;77(6):986-990.[6]Umemori M, Sugawara J, Mitani H, et al. Skeletal anchorage system for open-bite correction.Am J OrthodDentofacial Orthop.1999;115(2): 166-174.[7]Kuroda S, Katayama A, Takano -Yamamoto T. Severe anterior open-bite case treated using titanium screw anchorage. Angle Orthod.2004;74(4): 558-567.[8]Langer R, Vacanti JP.Tissue engineering.Science.1993;260(5 110):920-926.[9]曹谊林. 组织工程学理论与实践[M].上海:上海科学技术出版社,2004:3-8.[10]Lee M, Wu BM.Recent advances in 3D printing of tissue engineering scaffolds. Methods Mol Biol.2012;868: 257-267.[11]Ghosh S,Parker ST,Wang X,et al.Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. AdvFunct Mater 2008;18:1883-1889.[12]Therriault D, White SR, Lewis JA.Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2003;2:265-271.[13]Wu C, Luo Y, Cuniberti G,et al.Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. ActaBiomater.2011;7:2644-2650.[14]Ozbolat IT, Yu Y.Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng.2013; 60(3):691-699.[15]Arcos D, Izquierdo-Barba I, Vallet-Regi M. Promising trends of bioceramics in the biomaterials field. J Mater Sci Mater Med. 2009;20:447-455.[16]Seitz H, Rieder W, Irsen S,et al. Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering. Biomed Mater Res Part B: ApplBiomater 2005;74(2): 782-788.[17]Simon JL, Rekow ED, Thompson VP,et al. MicroCT analysis of hydroxyapatite bone repair scaffolds created via three-dimensional printing for evaluating the effects of scaffold architecture on bone ingrowth. Biomed Mater Res. 2008;85(2): 371-377.[18]Khoda AK, Ozbolat IT, Koc B.A functionally gradient variational porosity architecture for hollowed scaffolds fabrication. Biofabrication 2011;3(3) 034106.[19]Fedorovich NE, Kuipers E, Gawlitta D,et al.Scaffold Porosity and Oxygenation of Printed Hydrogel Constructs Affect Functionality of Embedded Osteogenic Progenitors. Tissue Eng Part A. 2011;17(19-20):2473-2486. [20]Sachlos E, Wahl DA, Triffitt JT, et al.The impact of critical point drying with liquid carbon dioxide on collagen– hydroxyapatite composite scaffolds. Acta Biomater. 2008;4(5): 1322-1331. [21]Butscher A, Bohner M, Doebelin N, et al. Newdepowdering- friendly designs for three-dimensional printing of calcium phosphate bone substitutes.Acta Biomater. 2013;9(11): 9149-9158.[22]Fedorovich NE, Schuurman W, Wijnberg HM,et al. Biofabrication of Osteochondral Tissue Equivalents by Printing Topologically Defined, Cell-Laden Hydrogel Scaffolds. Tissue Eng Part C Methods. 2012;18(1):33-44. [23]Rath SN, Strobel LA, Arkudas A,et al.Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med. 2012;16(10): 2350-2361[24]Korpela J, Kokkari A, Korhonen H, et al.Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater. 2013;101(4):610-619.[25]Lee JY, Choi B, Wu B, et al.Customized biomimetic scaffolds created by indirect threedimensional printing for tissue engineering. Biofabrication. 2013;5(4):045003.[26]Inzana JA, Olvera D, Fuller SM,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026-4034.[27]Gonçalves EM, Oliveira FJ, Silva RF, et al.Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. 2016;104(6):1210-1219.[28]Fielding G, Bose S.SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 2013;9(11):9137-9148.[29]Tarafder S, Davies NM, Bandyopadhyay A, et al.3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model.Biomater Sci. 2013 December 1; 1(12): 1250-1259.[30]Tarafder S, Bose S.Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis. ACS Appl Mater Interfaces. 2014;6(13):9955-9965.[31]Tarafder S, Dernell WS, Bandyopadhyay A, et al.SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater. 2015;103(3):679-690.[32]Shim JH, Kim SE, Park JY,Three-Dimensional Printing of rhBMP-2-Loaded Scaffolds with Long-Term Delivery for Enhanced Bone Regeneration in a Rabbit Diaphyseal Defect. Tissue Eng Part A. 2014;20(13-14):1980-1992.[33]Dadsetan M, Guda T, Runge MB, et al.Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater. 2015;18:9-20.[34]Kumar A, Nune KC, Misra RD. Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds. J Biomed Mater Res A. 2016; 104(6):1343-1351.[35]Vorys GC, Bai H, Chandhanayingyong C,et al. Optimal internal fixation of anatomically shaped synthetic bone grafts for massive segmental defects of long bones. Clin Biomech (Bristol, Avon). 2015;30(10):1114-1118.[36]Vo TN, Ekenseair AK, Spicer PP, et al. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Release. 2015; 205:25-34.[37]Huang J, Tian B, Chu F, et al. Rapid maxillary expansion in alveolar cleft repaired with a tissue-engineered bone in a canine model. J Mech Behav Biomed Mater. 2015;48:86-99. |