中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (6): 940-945.doi: 10.3969/j.issn.2095-4344.2017.06.021

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

多壁碳纳米管/聚左旋乳酸复合纳米纤维支架材料与小鼠神经干细胞的生物相容性

林成楷,戎利民,刘  斌
  

  1. 中山大学附属第三医院脊柱外科,广东省广州市   510630
  • 收稿日期:2017-02-07 出版日期:2017-02-28 发布日期:2017-03-16
  • 通讯作者: 刘斌,博士,主任医师,中山大学附属第三医院脊柱外科,广东省广州市 510630
  • 作者简介:林成楷,男,1991年生,广东省陆丰县人,汉族,2017年中山大学附属第三医院毕业,硕士,主要从事脊髓损伤组织工程修复领域的研究。
  • 基金资助:

    国家自然科学基金(31170947 , 31470949 , 81472122);广东省自然科学基金(S2012020011099 , S2013010016413);广东省科技计划项目(2012B060300008);广州市科技计划项目(2013J4100062);教育部博士点新教师基金(20100171120088)

Biocompatibility of electrospun carbon nanotubes/poly(L-lactic acid) nanofiber scaffolds with mouse neural stem cells

Lin Cheng-kai, Rong Li-min, Liu Bin
  

  1. Department of Spine Surgery, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
  • Received:2017-02-07 Online:2017-02-28 Published:2017-03-16
  • Contact: Liu Bin, M.D., Chief physician, Department of Spine Surgery, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
  • About author:Lin Cheng-kai, Master, Department of Spine Surgery, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 31170947, 31470949, 81472122; Guangdong Natural Science Foundation, No. S2012020011099, S2013010016413; Guangdong Science and Technology Planning Project, No. 2012B060300008; Guangzhou Science and Technology Planning Project, No. 2013J4100062; New Teacher’s Fund for Doctor Stations of Ministry of Education of China, No. 20100171120088

摘要:

文章快速阅读:

 

文题释义:
碳纳米管
:是一种新型的纳米材料,具有独特的内在结构和诸多优异性能,如良好的力学性能、导电性、化学稳定性和热稳定性,在信息材料、生物医用材料、纳米催化剂等方面有着广阔的应用前景。
静电纺丝:是指使用电荷从液体中抽极细(一般在微米或纳米大小)纤维的工程过程,不需要化学混凝或者高温来从液体里生产固体纤维,这使得这个过程特别宜于用来生产大分子或者复合分子的纤维,以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。

背景:聚左旋乳酸(PLLA)支架材料在生物材料领域中尤其是组织工程学中应用广泛,但亲水性较低、缺乏表面细胞结合位点和细胞黏附性较差等缺点制约着其进一步应用。
目的:体外实验观察小鼠神经干细胞与多壁碳纳米管/聚左旋乳酸(MWCNTs/PLLA)纳米纤维支架材料复合培养的生长状况并检测其生物相容性。
方法:分离培养小鼠神经干细胞,静电纺丝法制备PLLA纳米纤维支架材料并用MWCNTs修饰;取第3代神经干细胞分别接种于PLLA与MWCNTs/PLLA 纳米纤维支架材料上,进行体外培养。
结果与结论:①神经干细胞在PLLA及MWCNTs/PLLA支架材料中生存良好,材料无明显毒性;②神经干细胞在MWCNTs/PLLA材料上表现出比PLLA支架材料更加优异的细胞黏附能力及增殖能力;③扫描电镜及Hoechst 33342染色显示神经干细胞在材料表面生长良好,形态正常;④免疫荧光MAP2染色显示神经干细胞在MWCNTs/PLLA支架材料上生长并分化为成熟神经元,且神经元突起生长方向与纳米纤维支架方向一致;⑤结果表明,MWCNTs/PLLA纳米纤维支架材料的细胞相容性良好,能为神经干细胞提供良好的生长载体且有定向诱导分化为神经元突起的作用,是组织工程学修复脊髓损伤的理想支架材料。

关键词: 生物材料, 纳米材料, 纳米纤维支架材料, 静电纺丝, 聚左旋乳酸纤维, 多壁碳纳米管, 神经干细胞, 生物相容性, 细胞毒性, 细胞黏附性, 细胞增殖, 国家自然科学基金

Abstract:

BACKGROUND: Poly(L-lactic acid) (PLLA) scaffold is a kind of widely used biomaterial in tissue engineering. However, low hydrophilicity and lack of surface cell recognition site of PLLA hinder its further application.
OBJECTIVE: To study the biocompatibility of multi-walled carbon nanotubes/PLLA (MWCNTs/PLLA) nanofiber scaffolds with mouse neural stem cells in vitro.
METHODS: Mouse neural stem cells were isolated. Then we used electrospinning to fabricate PLLA nanofibers and modified them with multi-walled carbon nanotubes. We assessed their biocompatibility with passage 3 mouse neural stem cells in vitro.
RESULTS AND CONCLUSION: Scanning electron microscope showed that the neural stem cells could survive on both scaffolds. No cytotoxic effects were detected on both scaffolds by Cell Counting Kit-8 detection. The adhesion and proliferation abilities of neural stem cells on the MWCNTs/PLLA scaffold were significantly greater than those on the PLLA scaffold. Neural stem cells were found grow well and have normal morphology on both scaffolds under scanning electron microscope and by Hoechst 33342 staining. Besides, immunofluorescence staining showed MWCNTs/PLLA could promote neural stem cells to differentiate into mature neurons and neurites grew along with the nanofiber scaffold. In conclusion, the MWCNTs/PLLA nanofiber scaffold has better properties than the PLLA for transplanted cells and provides a good growth carrier for neural stem cells to be induced to differentiate into neurons, which is expected to have a great potential of applications in nerve tissue engineering. 

Key words: Nanotubes, Carbon, Lactic Acid, Polymers, Neural Stem Cells, Cell Proliferation, Cell Adhesion, Tissue Engineering

中图分类号: