中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (35): 5244-5249.doi: 10.3969/j.issn.2095-4344.2016.35.011

• 数字化骨科 digital orthopedics • 上一篇    下一篇

建立锁骨个性化锁定接骨板模型及有限元分析

尹 峰,王晓东,梁 炜,任龙韬   

  1. 太原市中心医院骨科,山西省太原市 030009
  • 修回日期:2016-06-27 出版日期:2016-08-26 发布日期:2016-08-26
  • 通讯作者: 王晓东,医师,太原市中心医院骨科,山西省太原市 030009
  • 作者简介:尹峰,男,1962年生,山西省吕梁市人,汉族,副主任医师,主要从事骨科创伤与关节损伤研究。

Establishment of personalized locking clavicle plate model and finite element analysis

Yin Feng, Wang Xiao-dong, Liang Wei, Ren Long-tao   

  1. Department of Orthopedics, Taiyuan City Central Hospital, Taiyuan 030009, Shanxi Province, China
  • Revised:2016-06-27 Online:2016-08-26 Published:2016-08-26
  • Contact: Wang Xiao-dong, Physician, Department of Orthopedics, Taiyuan City Central Hospital, Taiyuan 030009, Shanxi Province, China
  • About author:Yin Feng, Associate chief physician, Department of Orthopedics, Taiyuan City Central Hospital, Taiyuan 030009, Shanxi Province, China

摘要:

文章快速阅读:

 

 

文题释义:
Abaqus 软件:是一套功能强大的工程模拟的有限元软件,可模拟任意几何形状,深入反映细微的结构现象和现象间的差别,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。除常规的金属弹塑性材料外,还可以有效地模拟高分子材料、复合材料、土体、岩石和高温蠕变材料等特殊材料。
直型接骨板与“S”型接骨板的三维有限元模型:①直型接骨板三维有限元模型:在近端固定,远端向下垂直钛板长轴方向折弯,应力最大部位均位于中间孔及周围;②“S”型接骨板三维有限元模型:在近端固定,远端轴向扭转,其应力最大部位集中部位均位于中间孔及周围,应力分布无明显变化,但“S”型接骨板较直型接骨板应力更加分散?
 
摘要
背景:应用有限元分析的方法构建人体骨骼三维立体模型及设计骨外科医疗器械更为精准和快捷。
目的:根据锁骨模型建立锁骨锁定接骨板模型,分析在折弯和扭转条件下,评估锁定接骨板有限元模型的应力分布情况。
方法:采用64排螺旋CT对青年成年健康男性胸部进行平扫,得到该男性锁骨的二维图像数据,运用Mimics10.0软件将所得数据分析、建立锁骨三维有限元模型,根据锁骨模型运用UG软件建立锁骨锁定接骨板模型。利用abaqus软件评估锁定接骨板分别向下给予200 N的力进行折弯及200 N•mm进行轴向扭转,模拟锁骨锁定钛板的受力情况,进一步对其应力分布进行分析。
结果与结论:根据CT扫描原始数据构建的锁骨钛合金接骨板的三维实体模型,与骨的贴合性良好,此模型可通过3D打印技术得到适合单个个体的个性化接骨板。有限元分析结果基本可以模拟接骨板的实际受力情况。直型接骨板和“S”型接骨板在侧方折弯及轴向扭转受力情况下,得出7孔钛板的最大应力分布位于中心孔正中。实际手术操作中,锁骨骨折断端与旷置锁定孔正中存在应力叠加,钛板放置若能避开该应力集中处,可有效避免植入后断板发生,为临床实际操作提供理论指导,并为之后对其他类型钛质接骨板的生物力学分析提供了参考以及技术路线。

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

ORCID:
0000-0002-5929-1119(尹峰)

关键词: 骨科植入物, 数字化骨科, 锁骨骨折, 个性化锁定钛质接骨板, 接骨板断裂, 3D打印技术, 锁骨锁定接骨板模型, 生物力学特性, 三维有限元模型, 三维有限元分析

Abstract:

BACKGROUND: The finite element analysis method is more accurate and fast to construct the three-dimensional model of the human skeleton and design the bone surgical medical instrument.

OBJECTIVE: To establish locking plate model according to the clavicle model, analyze and evaluate stress distribution of locking plate of the finite element model under bending and torsion conditions.
METHODS: Chest scan was carried out in a healthy young adult male by adopting 64-row spiral CT and his two-dimensional image data were gotten. The obtained data were analyzed with Mimics 10.0 software to establish the three-dimensional clavicle finite element model. The clavicle locking fixation plate model was established by applying the UG software. The locking fixation plate was evaluated by utilizing the abaqus software when the plate was bent while down to give force of 200 N, and twisted while 200 N•mm, to simulate the force and analyze the stress distribution of the locking plate.
RESULTS AND CONCLUSION: Based on the original image parameters provided by CT, this experiment produced a three-dimensional model of the clavical titanium plate which fitted better to bones. This model can obtain a single individual, personalized plate by three-dimensional printing technology. The finite element analysis basically can simulate the actual stress of the plate. For straight plate and “S”-shape plate, in lateral bending and axial torsion loads, the maximum stress distribution of the seven-hole titanium plate is located in the center of the center hole. During actual surgical procedures, clavicle fracture fragments and middle locking hole had stress superposition. If the titanium plate can avoid the stress concentration, it can effectively avoid the occurrence of the broken plate after implantation, provide theoretical guidance for clinical practice, and provide reference and technical route for biomechanical analysis of other types of titanium plate. 

 

Key words: Titanium, Finite Element Analysis, Tissue Engineering

中图分类号: