中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (6): 855-862.doi: 10.3969/j.issn.2095-4344.1570

• 细胞外基质材料 extracellular matrix materials • 上一篇    下一篇

新方法可获得更佳的组织工程小直径血管细胞外基质支架

蒲 磊1,2,潘兴纳1,张 静3,吴 剑1,2,李亚雄1,2,杨应南1,2   

  1. 昆明医科大学附属延安医院,1心脏大血管外科,2云南省心血管外科研究所,云南省昆明市 650051;3昆明医科大学第二附属医院麻醉科,云南省昆明市  650101
  • 收稿日期:2018-10-06 出版日期:2019-02-28 发布日期:2019-02-28
  • 通讯作者: 李亚雄,教授,博士及硕士生导师,昆明医科大学附属延安医院心脏大血管外科,云南省昆明市 650051
  • 作者简介:蒲磊,男,1986年生,云南省昆明市人,汉族,2017年昆明医科大学毕业,博士,医师,主要从事心血管组织工程,皮肤修复重建研究。

Acquistion of a suitable extracellular matrix scaffold for tissue-engineered small-diameter blood vessel using a novel decellularization protocol

Pu Lei1, 2, Pan Xingna1, Zhang Jing3, Wu Jian1, 2, Li Yaxiong1, 2, Yang Yingnan1, 2   

  1. 1Department of Cardiovascular Surgery, 2Yunnan Provincial Institute of Cardiovascular Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China; 3Department of Anesthesiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
  • Received:2018-10-06 Online:2019-02-28 Published:2019-02-28
  • Contact: Li Yaxiong, Professor, Master’s supervisor, Doctoral supervisor, 1Department of Cardiovascular Surgery, 2Yunnan Provincial Institute of Cardiovascular Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
  • About author:Pu Lei, PhD, Physician, 1Department of Cardiovascular Surgery, 2Yunnan Provincial Institute of Cardiovascular Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China

摘要:

文章快速阅读:

 

文题释义:
细胞外基质:
是细胞合成并分泌到胞外,分布于细胞表面和细胞之间的一类大分子蛋白质的总称,其可构成复杂的网状支架结构,为细胞提供结构和生化支持,调节组织的发生和细胞的生理活动。细胞外基质包括多种分子,如:蛋白多糖、非蛋白多糖类多糖、胶原、弹性蛋白、粘连蛋白、层粘连蛋白、细胞外载体。
五色套染:是一种特殊染色方法,能用于识别组织中的不同组分,其由阿利新蓝、Verhoeff苏木精、天狼星红、酸性品红和番红花粉5种染料混合而成,能够将弹性蛋白和细胞核染成黑色、胶原纤维染成黄色、不定形细胞外基质染成蓝色、纤维蛋白染成亮红色、平滑肌染成红色。


背景:获得适宜的支架材料是构建组织工程小直径血管的基础,前期研究发现,非离子型去垢剂的脱细胞效果差,联合应用离子型去垢剂能更有效去除细胞成分。
目的:比较不同脱细胞方法制备猪颈动脉脱细胞支架的有效性,探索更适宜的细胞外基质支架制备方法。
方法:取普通猪颈动脉30根,随机分为5组(n=6),其中A组不进行脱细胞处理;B组采用1%十二烷基硫酸钠+1%脱氧胆酸钠进行脱细胞处理;C组采用0.5%十二烷基硫酸钠+0.5%脱氧胆酸钠进行脱细胞处理;D组采用1%十二烷基硫酸钠+1%Triton X-100进行脱细胞处理;E组采用0.5%十二烷基硫酸钠+0.5%Triton X-100进行脱细胞处理。对各组样本分别行苏木精-伊红染色、五色套染、扫描电镜、免疫组织化学及生物机械力学检测。
结果与结论:①苏木精-伊红染色、五色套染显示,B、C组脱细胞完全,D、E组于局部可见细胞残留;②扫描电镜显示,脱细胞各组胶原纤维束和弹性蛋白保存完整,B组孔隙结构的形态、尺寸优于C、D、E组;③免疫组织化学评估显示,脱细胞各组均有异种抗原α-1,3-Gal表达,B组α-1,3-Gal抗原表达低于C、D、E组;④生物机械力学检测显示,脱细胞各组爆破压力、缝线保持力和缝合保留强度较A组显著下降(P < 0.05),脱细胞各组间比较无差异;脱细胞各组顺应性、长轴断裂伸长率、横轴最大应力、横轴断裂伸长率、横轴杨氏模量与对照组比较无差异(P > 0.05);脱细胞各组长轴最大应力和长轴杨氏模量较A组显著下降(P < 0.05),其中B、C组长轴最大应力和长轴杨氏模量下降较D、E组明显(P < 0.05);⑤结果表明,基于1%十二烷基硫酸钠+1%脱氧胆酸钠的方法可获得更佳的猪颈动脉细胞外基质支架,适用于构建组织工程小直径血管。

ORCID: 0000-0001-8729-7158(李亚雄)

 

关键词: 脱细胞, 细胞外基质, 组织工程小直径血管, 细胞外基质支架

Abstract:

BACKGROUND: A proper scaffold is the basis for construction of tissue-engineered small diameter blood vessels. Preliminary study has shown non-ionic detergents with limited effects of decellularization, and combined application of ionic detergents exhibits more effective decellularization.

OBJECTIVE: To compare the effectiveness of different preferable methods for preparing porcine carotid artery derived extracellular matrix scaffold, and to explore the optimal preparation method.
METHODS: Porcine carotid arteries (n=30) were obtained and randomized into five groups (n=6 per group). Then porcine carotid arteries were decellularized, followed by treatment with 1% sodium dodecyl sulfate and 1% sodium deoxycholate (group B), 0.5% sodium dodecyl sulfate and 0.5% sodium deoxycholate (group C), 1% sodium dodecyl sulfate and 1% Triton X-100 (group D), 0.5% sodium dodecyl sulfate and 0.5% Triton X-100 (group E). Native procine carotid aitery served as control (group A). Tissue samples of each group underwent hematoxylin-eosin staining, and Movat’s pentachrome staining, scanning electron microscope, immunohistochemistry and biomechanical test.

RESULTS AND CONCLUSION: Hematoxylin-eosin staining and Movat’s staining revealed that the cellular components were completely removed in the groups B and C; however, cellular residues were visualized in the groups D and E. Under the scanning electron microscope collagen and elastin fiber bundles were well preserved in the decellularization groups; however, the morphology and size of porous structure in the group B were superior to those in the groups C, D and E. Immunohistochemistry staining showed that the xenogeneic antigen, α-1,3-Gal, expressed in the decellularization groups; however, the expression of α-1,3-Gal was lower in the group B than the other groups. Biomechanical test indicated that burst pressure, suture-holding capacity and suture-holding strength were significantly decreased in the decellularization groups compared with group A (P < 0.05). However, there was no significant difference in the compliance, longitudinal elongation at brake, circumferential ultimate tensile stress, circumferential elongation at break and circumferential Young’s modulus compared with control group (P > 0.05). Decellularization caused a significant decrease in the longitudinal ultimate tensile stress and longitudinal Young’s modulus in the decellularization groups (P < 0.05). Furthermore, the longitudinal ultimate tensile stress and longitudinal Young’s modulus in the groups B and C were significantly lower than those in the groups D and E (P < 0.05). Our results suggest that the novel decellularization method based on 1% sodium dodecyl sulfate and 1% sodium deoxycholate optimizes the extracellular matrix scaffold for the construction of tissue-engineered small-diameter blood vessel.

 

Key words: Extracellular Matrix;, Blood Vessel Prosthesis, Biomechanics, Tissue Engineering

中图分类号: