中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (2): 265-270.doi: 10.3969/j.issn.2095-4344.1339

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

基于微流控芯片模拟体内受精及早期胚胎发育环境的输卵管模型构建

汪  萌,张  博   

  1. 华中科技大学同济医学院附属同济医院生殖医学中心,湖北省武汉市  430030
  • 收稿日期:2019-03-11 修回日期:2019-03-29 接受日期:2019-04-24 出版日期:2020-01-18 发布日期:2019-12-25
  • 通讯作者: 张博,博士,主治医师,华中科技大学同济医学院附属同济医院生殖医学中心,湖北省武汉市 430000
  • 作者简介:汪萌,男,1994年生,湖北省武汉市人,汉族,华中科技大学同济医学院在读硕士,主要从事细胞生物学和分子生物学方面的研究。
  • 基金资助:
    国家自然科学基金(81601348)

Construction of microfluidics-based fallopian tube model for mimicking fertilization and early embryo culture in vivo

Wang Meng, Zhang Bo   

  1. Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
  • Received:2019-03-11 Revised:2019-03-29 Accepted:2019-04-24 Online:2020-01-18 Published:2019-12-25
  • Contact: Zhang Bo, MD, Attending physician, Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
  • About author:Wang Meng, Master candidate, Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
  • Supported by:
    the National Natural Science Foundation of China, No. 81601348

摘要:


文题释义:

微流控芯片:又被称作芯片实验室,是将传统的化学技术和生物技术结合,并将所有基本操作单元微缩集成在一块芯片上以自动完成全过程的一项新技术,它在生物、化学、医学等领域都有巨大潜力,目前广泛运用于各行各业。


输卵管:女性生殖系统的重要组成部分,体内受精及早期胚胎培养的场所,胚胎在输卵管壶腹部和峡部交界处完成受精过程后,在流动的输卵管液、摆动的输卵管上皮细胞纤毛、收缩的输卵管肌肉等的共同作用下移动至宫腔进行着床,另外输卵管上皮细胞会分泌各种细胞因子辅助胚胎的发育,对胚胎的发育和着床过程非常重要。


背景:胚胎受精和早期胚胎培养是辅助生殖技术中重要的一部分,然而近几十年来胚胎培养技术却基本没有更新,因此胚胎受精和早期胚胎培养的条件成为了限制辅助生殖技术发展的一个瓶颈。

目的:构建基于微流控芯片来模拟体内受精及早期胚胎发育环境的仿真输卵管模型。

方法:采用软光刻法制作微流控芯片,使芯片微通道在形状上符合输卵管的解剖结构;组织消化贴壁法进行小鼠输卵管原代上皮细胞的培养和提纯;用角蛋白免疫荧光法对提纯后的小鼠输卵管原代上皮细胞进行鉴定,并将鉴定后的上皮细胞种植在微流控芯片通道内壁上以模拟输卵管生化环境;将芯片接入自动换液装置以模拟输卵管液流环境。

结果与结论:①这款输卵管模型呈圆柱状,长度为2 cm,直径为1 cm,在形状上与体内输卵管峡部的解剖学特征比较相符合;②角蛋白免疫荧光结果为阳性,提示组织消化贴壁法可分离培养出小鼠输卵管原代上皮细胞;③提纯后的小鼠输卵管原代上皮细胞种植在模型内壁,为胚胎的受精和早期培养提供了与体内微环境类似的生化环境。微流控芯片接入自动换液装置后,通道内的代谢废物能被及时带走,新的营养物质得以补充,实现了对输卵管真实流体环境的模拟;④研究将微流控芯片应用于辅助生殖技术,通过模拟体内受精及早期胚胎发育环境,实现了输卵管解剖学和生化环境的的重建,构建了以输卵管为模型的器官芯片,为进一步改善辅助生殖技术和提高受精率和优胚率奠定基础。


ORCID: 0000-0002-8168-8999(汪萌)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松组织工程

关键词: 微流控, 微流控芯片, 输卵管, 辅助生殖技术, 胚胎培养

Abstract:

BACKGROUND: With the increasing proportion of infertility in the population, more and more attentions have been paid on assisted reproductive techniques. Fertilization and early embryo culture are the significant parts of assisted reproductive techniques; however, they remain unchanged in the last few decades.

OBJECTIVE: To design a novel microfluidics-based fallopian tube model that can mimic the microenvironment of fertilization and early embryo culture in vivo.

METHODS: Microfluidic device was manufactured by soft lithography method to mimic the anatomical characteristic of fallopian tube in vivo. Mouse oviduct primary epithelial cells were cultured and purified by explants culture method, and then the purified cells were identified by keratin immunofluorescence method. Epithelial cells were then loaded into the channel to mimic the biochemical environment of fallopian tube in vivo. The chip was connected to the automatic liquid changing device to mimic the liquid environment of fallopian tube in vivo.

RESLUTS AND CONCLUSION: (1) The channel of this model is cylindrical with 2 cm of height and 1 cm of diameter, which were in accordance with the anatomical characteristic of the isthmus of fallopian tube in shape. (2) The keratin immunofluorescence was positive, which indicated that mouse oviduct primary epithelial cells can be obtained by explants culture method. (3) The cells were loaded into the channel to cover the wall of channel, which provided a biochemical microenvironment similar to that in vivo for fertilization and early embryo culture. After the chip was connected to the automatic liquid changing device, metabolic waste could be taken away and nutrient substance can be replenished in time, which mimics the real fluid environment in vivo. (4) This study combined microfluidics technology and assisted reproductive techniques to design a novel fallopian tube model, which mimics the micro-environment of fertilization and early embryo culture in vivo. This study has laid a foundation for further improvement of assisted reproductive techniques and the rate of fertilization and embryo optimization.

Key words: microfluidics, microfluidic chip, fallopian tube, assisted reproductive techniques, embryo culture

中图分类号: