中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (22): 3584-3590.doi: 10.3969/j.issn.2095-4344.1302

• 生物材料综述 biomaterial review • 上一篇    下一篇

微流控芯片技术在细胞黏附研究中的优势与应用前景

专  行1,郑国侠2,王云华1
  

  1. 1School of Medicine, Dalian University, Dalian 116622, Liaoning Province, China; 2School of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning Province, China
  • 收稿日期:2019-03-27
  • 通讯作者: 王云华,副教授,硕士生导师,大连大学医学院,辽宁省大连市 116622
  • 作者简介:专行,女,1993年生,湖北省咸宁市人,汉族,大连大学在读硕士,主要从事微流控芯片在病原生物学中的应用研究。
  • 基金资助:

    国家自然科学基金(81471807),项目负责人:王云华;国家自然科学基金(41476085),项目负责人:郑国侠

Advantages and application prospects of microfluidic chip technology in cell adhesion research

Zhuan Hang1, Zheng Guoxia2, Wang Yunhua1
  

  1. 1大连大学医学院,辽宁省大连市  116622;2大连大学环境与化学工程学院,辽宁省大连市  116622
  • Received:2019-03-27
  • Contact: Wang Yunhua, Associate professor, Master’s supervisor, School of Medicine, Dalian University, Dalian 116622, Liaoning Province, China
  • About author:Zhuan Hang, Master candidate, School of Medicine, Dalian University, Dalian 116622, Liaoning Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 81471807 (to WYH), No. 41476085 (to ZGX)

摘要:

文章快速阅读:

文题释义:
微流控芯片技术:又称为芯片实验室,是采用微加工技术,把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。
细胞黏附:细胞与细胞、细胞与基质间发生黏附的行为,参与外界进行信息交流的方式,控制着细胞的迁移、分化、增殖和凋亡等重要病理和生理过程。
 
 
背景:细胞黏附性质影响细胞的迁移、增殖、分化,对于细胞分离和富集、组织工程、临床疾病研究及应用均有极其重要的意义。微流控芯片具有小型化、集成化、高通量、低能耗、分析快速等特性,在细胞黏附研究中具有独特的优势。
目的:总结并讨论微流控芯片技术在细胞黏附研究中应用的最新进展。
方法:由第一作者检索 2008至 2018年PubMed 数据库和百链云数据库,纳入与微流控技术、细胞黏附等相关的文献,并进行系统整理、归纳总结和分析。
结果与结论:共检索到文献 238篇,按照纳入和排除标准筛选后,共纳入53篇文献,通过阅读、总结和分析文献发现:微流控芯片平台为进行体外基于细胞黏附研究提供了新的可能性,其具有更高的通量,并且能精确控制生物、物理、化学因素构建体内细胞微环境,调控一系列细胞行为,包括细胞黏附、迁移、生长、增殖和分化及细胞与细胞、细胞与基质的相互作用等。微流控芯片技术在动态监测细胞黏附过程、定量检测细胞黏附力、分离和富集稀有细胞、筛选生物医学材料及研究细胞黏附相关疾病等方面具有广阔的应用前景。

关键词: 细胞黏附, 微流控芯片技术, 细胞黏附力, 定量检测, 细胞分离和富集, 组织工程, 生物医学材料, 体外模型重建, 药物筛选, 国家自然科学基金

Abstract:

BACKGROUND: Cell adhesion affects cell migration, proliferation, and differentiation. It is of extremely vital significance for cell separation and enrichment, tissue engineering and clinical disease research. Microfluidic chips have unique advantages in cell adhesion studies such as miniaturization, integration, high throughput, low energy consumption, and rapid analysis.
OBJECTIVE: To summarize and discuss the latest advances of microfluidic chip technology in cell adhesion research.
METHODS: The first author performed a data retrieval of PubMed and Bailianyun databases to search the articles published during 2008-2018 and addressing cell adhesion and microfluidic chip technology and reviewed the literatures systematically.
RESULTS AND CONCLUSION: A total of 238 articles were retrieved and 53 articles were included in the final analysis according to the inclusion and exclusion criteria. These articles were read, summarized and analyzed. Results showed that the microfluidic chip platform provides new possibilities for in vitro studies of cell adhesion because it exhibits higher throughput, enables precise control of the biological, physical, and chemical factors involved in the construction of in vivo cellular microenvironment, and regulates a series of cellular behaviors including cell adhesion, migration, growth, proliferation, differentiation, cell-cell interactions, and cell-matrix interactions. Microfluidic chip technology has broad application prospects in the dynamic monitoring of cell adhesion process, quantitative measurement of cell adhesion, isolation and enrichment of rare cells, screening of biomedical materials, and research on cell adhesion-related diseases.

Key words: cell adhesion, microfluidic chip technology, cell adhesion, quantitative measurement, cell isolation and enrichment, tissue engineering, biomedical materials, in vitro model reconstruction, drug screening, the National Natural Science Foundation of China

中图分类号: