中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (2): 234-240.doi: 10.3969/j.issn.2095-4344.0012

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

同轴电纺P3HB4HB/聚乙烯醇复合支架的制备及其生物相容性

刘  琴1,2,3,叶  川4,张俊标5,何志旭3,崔冬冰3,杨  燕3,李  靖1,3,朱婷婷1,2,陈  娇1,2,马敏先1,2 
  

  1. 1贵州医科大学,贵州省贵阳市  550004;2贵州医科大学附属口腔医院,贵州省贵阳市  550004;3贵州医科大学组织工程与干细胞实验中心,贵州省贵阳市 550004;4贵州医科大学附属医院骨科,贵州省贵阳市  550004;5贵阳市口腔医院,贵州省贵阳市  550002
  • 收稿日期:2017-08-30 出版日期:2018-01-18 发布日期:2018-01-18
  • 通讯作者: 马敏先,副主任医师,贵州医科大学附属口腔医院修复种植科,贵州省贵阳市 550004
  • 作者简介:刘琴,女,1988年生,贵州省锦屏县人,侗族,贵州医科大学在读硕士,主要从事干细胞与组织工程研究。
  • 基金资助:
    国家自然科学基金资助项目(81360232);贵阳市科技计划项目(筑科合同[20141001]号)

Preparation of a poly(3-hydroxybutyrate-4-hydroxybutyrate)/polyvinyl alcohol composite scaffold by coaxial electrospinning and its biocompatibility

Liu Qin1, 2, 3, Ye Chuan4, Zhang Jun-biao5, He Zhi-xu3, Cui Dong-bing3, Yang Yan3, Li Jing1, 3, Zhu Ting-ting1, 2, Chen Jiao1, 2, Ma Min-xian1 , 2
  

  1. 1Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 2Department of Stomatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 3National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 4Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 5Guiyang Stomatological Hospital, Guiyang 550002, Guizhou Province, China
  • Received:2017-08-30 Online:2018-01-18 Published:2018-01-18
  • Contact: Ma Min-xian, Associate chief physician, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Stomatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province,
  • About author:Liu Qin, Studying for master’s degree, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Stomatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
  • Supported by:
    the National Natural Science Foundation of China, No. 81360232; the Science and Technology Program Project of Guiyang, No. 20141001

摘要:

文章快速阅读:

 

文题释义:
聚(3-羟基丁酸酯-co-4-羟基丁酸酯):是一种能够完全降解,具有良好成膜性、物理性能的高分子材料。这些优良特性使其在医用材料、组织工程支架材料等方面有广泛的应用潜力,但其亲水性差。
聚乙烯醇:是一种具有生物可降解性的水溶性高分子材料,可避免有机溶剂对细胞的破坏作用,成纤性好,是一种适合细胞生长、增殖的支架材料。
 
背景:聚(3-羟基丁酸酯-co-4-羟基丁酸酯)[poly(3-hydroxybutyrate-4-hydroxybutyrate),P3HB4HB]是一种能够完全降解,具有良好的成膜性、物理性能的高分子材料,但其亲水性较差。
目的:制备同轴电纺P3HB4HB/聚乙烯醇复合支架,通过体外实验探讨支架的物理属性及生物相容性。
方法:分别制备P3HB4HB电纺支架、聚乙烯醇电纺支架及同轴电纺P3HB4HB/聚乙烯醇复合支架,检测3组支架的形貌、接触角及拉伸力学性能。将第4代SD大鼠骨髓间充质干细胞分别接种于3组支架上,接种1,3,6 h,检测细胞黏附率;接种第1,3,5,7天,MTT法检测细胞增殖;接种7 d后,荧光染色观察细胞活性。将第4代SD大鼠骨髓间充质干细胞分别接种于3组支架上,成骨及成软骨诱导分化14 d后,进行茜素红、甲苯胺蓝染色。
结果与结论:①支架形貌:扫描电镜下,3组支架呈三维网状相互连通的结构,相互交错,P3HB4HB电纺支架、复合支架纤维直径较为均一,排列规整;透射电镜下仅复合支架可见明显的芯-壳结构;②支架表征:P3HB4HB电纺支架、复合支架的拉伸强度、拉伸弹性模量及拉伸最大力明显高于聚乙烯醇电纺支架(P < 0.05);复合支架的接触角< 90°;③细胞黏附率:聚乙烯醇电纺支架组>复合支架组>P3HB4HB电纺支架组(P < 0.05);④细胞增殖及活性:复合支架组接种5,7 d的细胞增殖快于其余两组(P < 0.05);接种7 d后,聚乙烯醇电纺支架、复合支架上的活细胞多于P3HB4HB电纺支架;⑤细胞分化:复合支架组细胞的成骨和成软骨特异性染色强于其余两组;⑥结果表明:同轴电纺P3HB4HB/聚乙烯醇复合支架具有良好生物相容性和有一定力学强度。

关键词: 生物材料, 同轴电纺, P3HB4HB, 支架, 聚乙烯醇, 间充质干细胞, 组织工程, 生物相容性, 物理性能, 成骨诱导, 茜素红染色, 国家自然科学基金

Abstract:

BACKGROUND: Poly(3-hydroxybutyrate-4-hydroxybutyrate) (P3HB4HB) is a kind of polymer material that can be completely degraded, has good film-forming property and physical properties, but has poor hydrophilicity.
OBJECTIVE: To prepare P3HB4HB/polyvinyl alcohol (PVA) coaxial electrospun scaffolds, and to investigate the physical properties and biocompatibility of scaffolds in vitro.
METHODS: We prepared P3HB4HB electrospun scaffold, PVA electrospun scaffold and P3HB4HB/PVA coaxial electrospun composite scaffold, and then detected the morphology and characterization, contact angle, and tensile mechanical properties of the scaffolds. Passage 4 bone marrow mesenchymal stem cells (BMSCs) from Sprague-Dawley rats were seeded on the three kinds of scaffolds. Cell adhesion rate was detected at 1, 3, 6 hours after seeding; cell proliferation was detect at 1, 3, 5, 7 days after seeding; and cell viability was observed fluorescence staining at 7 days after seeding. Passage 4 BMSCs were seeded onto the three kinds of scaffolds followed by 14 days of osteogenic and chondrogenic induction. Then, alizarin red staining and toluidine blue staining were used to verify BMSCs differentiation potentials.
RESULTS AND CONCLUSION: (1) Scaffold morphology: Under the scanning electron microscope, the structure of the scaffold in each group was a three-dimensional interconnected network. The fiber diameters of P3HB4HB electrospun scaffold and P3HB4HB/PVA electrospun scaffold were homogeneous and ordered. The P3HB4HB/PVA scaffold showed an obvious core-shell structure under the transmission electron microscope. (2) Scaffold characterization: The tensile strength, tensile modulus and maximum stress of the P3HB4HB and P3HB4HB/PVA scaffolds were significantly higher than those of the PVA electrospun scaffold (P < 0.05). The contact angle of the P3HB4HB/PVA composite scaffold was less than 90°. (3) Cell adhesion rate was ranked as follows: PVA electrospun scaffold group > P3HB4HB/PVA composite scaffold group > P3HB4HB electrospun scaffold group (P < 0.05). (4) Proliferation and activity of cells: The cell proliferation of the P3HB4HB/PVA composite scaffold group was faster than that of the other two groups at 5 and 7 days (P < 0.05). There were more viable cells on the PVA electrospun scaffold and composite scaffold than on the P3HB4HB electrospun scaffold. (5) Cell differentiation: Osteogenesis and cartilage specific staining of the composite scaffold were stronger than those in the other two groups. Overall, the P3HB4HB/PVA coaxial electrospun scaffold has good biocompatibility and a certain mechanical strength.

Key words: Materials Testing, Stem Cells, Tissue Engineering

中图分类号: