中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (17): 4529-4541.doi: 10.12307/2026.139
• 组织构建相关数据分析 Date analysis of organization construction • 上一篇 下一篇
李瑞颖1,夏 翃2
收稿日期:2025-04-24
接受日期:2025-08-10
出版日期:2026-06-18
发布日期:2025-12-05
通讯作者:
夏翃,博士,副教授,首都医科大学生物医学工程学院,北京市 100069
作者简介:李瑞颖,女,2004年生,北京市人,汉族,首都医科大学第四临床医学院在读,主要从事眼视光医学研究。
基金资助:Li Ruiying1, Xia Hong2
Received:2025-04-24
Accepted:2025-08-10
Online:2026-06-18
Published:2025-12-05
Contact:
Xia Hong, PhD, Associate professor, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
About author:Li Ruiying, Forth Clinical School, Capital Medical University, Beijing 100176, China
Supported by:摘要:
文题释义:
可视化分析:将复杂的数据信息转换成易于理解的图像,以便研究者能直观地了解某一研究领域的模式、趋势、关联性等信息。
铜死亡:一种新发现的细胞死亡形式,由细胞内铜离子过载触发,在疾病特别是癌症的理解中具有重要意义,并为新的治疗策略提供了潜在方向。
背景:铜死亡作为一种新兴的细胞死亡方式,近年来受到广泛关注。然而,目前对于铜死亡的全球研究态势,尤其是在不同国家和学术群体中的研究重点与发展趋势尚缺乏系统性的认识。为了更全面地把握铜死亡领域的研究进展,亟需进行多数据库、多角度的文献计量分析。
目的:通过文献计量学方法系统分析铜死亡领域的研究现状、热点及发展趋势。
方法:采用文献计量学方法,结合CiteSpace和VOSviewer可视化分析工具,分别对国际权威的Web of Science核心合集数据库与中国知网数据库(CNKI)中2022-2024年间的1 378篇铜死亡相关文献进行分析,包括年发文量、科研合作网络、关键词共现聚类与热点变动特征以及高被引文献。通过对比分析这两个数据库的数据,旨在揭示全球视野下铜死亡研究的整体态势。
结果与结论:铜死亡研究呈现快速增长趋势,中国发文量居首,以上海交通大学、中南大学等为核心机构。研究主题集中于铜死亡机制、肿瘤治疗应用(化学动力学疗法)及与铁死亡的交叉调控。关键词突现分析表明“免疫微环境”“肿瘤治疗”是研究热点。机器学习基因预测模型和单细胞测序技术正在推动精准医学发展。英文研究多集中于机制探索和技术应用,其研究方法、技术路线和热点方向对正处于快速发展期的国内铜死亡研究具有重要的借鉴意义。尤其是在肿瘤治疗等重大疾病领域开展跨学科合作和多中心临床转化研究,有望为包括中国人群在内的恶性肿瘤等重大疾病诊疗提供更具针对性和有效性的新策略。
https://orcid.org/0009-0004-6111-3161 (李瑞颖)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
李瑞颖, 夏 翃. 铜死亡研究进展可视化分析:全球视野下的热点与前沿[J]. 中国组织工程研究, 2026, 30(17): 4529-4541.
Li Ruiying, Xia Hong. Visual analysis of cuproptosis research: global landscape of hotspots and frontiers[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(17): 4529-4541.













| [1] CHEN Q, KANG J, FU C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. 2018;3:18. [2] TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254-1261. [3] LI Y, HAN Y, SHU Q, et al. Cuproptosis and copper as potential mechanisms and intervention targets in Alzheimer’s disease. Biomed Pharmacother. 2025;183:117814. [4] WANG S, LIU X, WEI D, et al. Polyvalent Aptamer Nanodrug Conjugates Enable Efficient Tumor Cuproptosis Therapy Through Copper Overload and Glutathione Depletion. J Am Chem Soc. 2024;146(44):30033-30045. [5] NOH D, LEE H, LEE S, et al. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res. 2024;28:0094. [6] ZHAO P, WANG H, ZHAO H, et al. Tumor microenvironment-reprogrammable CpG-templated copper sulfide loaded with disulfiram for sensitized cuproptosis immunotherapy. Chem Eng J. 2024;487:150524. [7] ZHANG J, ZHANG A, GUO Y, et al. Nanoparticle-Mediated Cuproptosis and Photodynamic Synergistic Strategy: A Novel Horizon for Cancer Therapy. Cancer Med. 2025;14(3):e70599. [8] SPRINGER C, HUMAYUN D, SKOUTA R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel). 2024;16(3):647. [9] XIAO C, WANG X, LI S, et al. A cuproptosis-based nanomedicine suppresses triple negative breast cancers by regulating tumor microenvironment and eliminating cancer stem cells. Biomaterials. 2025;313:122763. [10] 宋一博,郑才仕,周树锋.铜死亡在肿瘤治疗方面的研究进展[J].华侨大学学报(自然科学版),2023,44(6):671-675. [11] 高亚婷,曹泽如,郭秀丽,等.铜死亡在妇科恶性肿瘤中的研究进展[J].国际生殖健康/计划生育杂志,2024,43(1):74-78. [12] 要甜,马宇锋.铜死亡在口腔鳞状细胞癌治疗及预后中的研究进展[J].口腔医学, 2024,44(11):871-875. [13] 王俊峰,包仕廷.铜死亡在肝细胞癌中的作用机制及诊疗研究进展[J].肝胆胰外科杂志,2024,36(10):634-640. [14] 曾丹,孙晓杰,贾伟涛,等.铜死亡与肾细胞癌关系的研究进展[J].山东医药, 2023,63(31):107-111. [15] 张雅浏,敖经盛,张晓东.铜死亡机制及其在动脉硬化中的研究进展[J].中国动脉硬化杂志,2024,32(10):890-898. [16] 张纪萌,谢昌材,罗耀文,等.铜死亡及铜代谢紊乱与神经退行性疾病的关系研究进展[J].空军军医大学学报,2025, 46(3):401-407. [17] 刘骏达,梁志超,王倩,等.铜死亡与铜代谢相关疾病研究进展[J].江苏大学学报(医学版),2022,32(4):318-325. [18] 叶涛,郑冀鲁,宋欣怡,等.基于铜死亡的癌症纳米疗法研究进展[J].生命科学, 2025,37(2):147-157. [19] 蔡林峻,彭婷,陈俊杰,等.铜死亡与铜载体药物抗肿瘤机制的研究进展[J].世界临床药物,2024,45(2):181-186. [20] REN X, ZHAO L, HAO Y, et al. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail. 2025;47(1):2431142. [21] SU Y, LIU B, WANG B, et al. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. Small. 2024;20(25):e2310342. [22] XIONG F, ZHANG Y, LI T, et al. A detailed overview of quercetin: implications for cell death and liver fibrosis mechanisms. Front Pharmacol. 2024;15:1389179. [23] LI X, ZHU D. Role of disulfide death in cancer (Review). Oncol Lett. 2024;29(1):55. [24] CHEN L, SHEN Q, LIU Y, et al. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther. 2025;10(1):31. [25] ZHANG L, DENG R, GUO R, et al. Recent progress of methods for cuproptosis detection. Front Mol Biosci. 2024;11:1460987. [26] CHEN C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004; 101 Suppl 1(Suppl 1):5303-5310. [27] VAN ECK NJ, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. [28] GE EJ, BUSH AI, CASINI A, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102-113. [29] TANG D, CHEN X, KROEMER G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022; 32(5):417-418. [30] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. [31] NEWMAN AM, LIU CL, GREEN MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457. [32] HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. [33] LI D, JIN S, CHEN P, et al. Comprehensive analysis of cuproptosis-related lncRNAs for prognostic significance and immune microenvironment characterization in hepatocellular carcinoma. Front Immunol. 2023;13:991604. [34] WANG X, JING H, LI H. A novel cuproptosis-related lncRNA signature to predict prognosis and immune landscape of lung adenocarcinoma. Transl Lung Cancer Res. 2023;12(2):230-246. [35] YAN JN, GUO LH, ZHU DP, et al. Clinical significance and potential application of cuproptosis-related genes in gastric cancer. World J Gastrointest Oncol. 2023; 15(7):1200-1214. [36] ZHANG S, ZHANG L, LU H, et al. A cuproptosis and copper metabolism-related gene prognostic index for head and neck squamous cell carcinoma. Front Oncol. 2022;12:955336. [37] HUANG X, ZHOU S, TÓTH J, et al. Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol. 2022; 13:978865. [38] ZHOU C, JIN L, YU J, et al. Integrated analysis identifies cuproptosis-related gene DLAT and its competing endogenous RNAs network to predict the prognosis of pancreatic adenocarcinoma patients. Medicine (Baltimore). 2024;103(9):e37322. [39] 安梦霞,王萍玉.基于铜死亡相关 LncRNAs 构建肺鳞癌预后预测模型[J]. 肿瘤防治研究,2023,50(11):1084-1090. [40] BHAT AA, AFZAL M, MOGLAD E, et al. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med. 2024; 24(1):226. [41] QIN Y, PU X, HU D, et al. Machine learning-based biomarker screening for acute myeloid leukemia prognosis and therapy from diverse cell-death patterns. Sci Rep. 2024;14(1):17874. [42] LI C, ZHANG K, GONG Y, et al. Based on cuproptosis-related lncRNAs, a novel prognostic signature for colon adenocarcinoma prognosis, immunotherapy, and chemotherapy response. Front Pharmacol. 2023;14: 1200054. [43] ZHANG S, YU S, DUAN H, et al. Revealing prognostic and tumor microenvironment characteristics of cuproptosis in bladder cancer by genomic analysis. Front Genet. 2022;13:997573. [44] 孟云,李想,潘凯,等.铜死亡相关基因在肝细胞癌中的表达及其临床意义[J].中国普通外科杂志,2023,32(1):74-86. [45] LI W, XIAO Y, GUO G, et al. Cuprous oxide nanocomposites with photothermal (PTT) and chemical dynamics (CDT) effects induce cuproptosis in breast cancer using the strategy of increasing inflow and reducing outflow. Nano Today. 2024;56:102223. [46] TIAN Y, HE X, YUAN Y, et al. TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy. Int J Nanomedicine. 2024;19:9145-9160. [47] XIE D, HU C, ZHU Y, et al. Sequential Therapy for Osteosarcoma and Bone Regeneration via Chemodynamic Effect and Cuproptosis Using a 3D-Printed Scaffold with TME-Responsive Hydrogel. Small. 2025;21(5): e2406639. [48] 张保朝,罗超,彭涛,等.基于铜死亡相关基因的肾透明细胞癌中预后模型的构建与应用[J].临床泌尿外科杂志,2023, 38(12):934-941. [49] WU H, ZHANG Z, CAO Y, et al. A Self-Amplifying ROS-Responsive Nanoplatform for Simultaneous Cuproptosis and Cancer Immunotherapy. Adv Sci (Weinh). 2024;11(23):e2401047. [50] HUANG H, GUO H, LIU J, et al. Dendrimer/metal-phenolic nanocomplexes encapsulating CuO2 for targeted magnetic resonance imaging and enhanced ferroptosis/cuproptosis/chemodynamic therapy by regulating the tumor microenvironment. Acta Biomater. 2024;183:252-263. [51] 徐森磊,刘超,潘慧,等.瘤周围刺电针调控三阴性乳腺癌铜死亡增敏化疗疗效的作用研究[J].针刺研究,2024,49(11): 1153-1159. [52] 王飞,王春艳,郭晓燕,等.基于Fibro Touch技术探讨肝豆扶木颗粒干预痰瘀互结型WD患者肝纤维化及铜死亡相关指标的临床疗效[J].中国实验方剂学杂志,2025,31(4):174-181. [53] CAO F, QI Y, WU W, et al. Single-cell and genetic multi-omics analysis combined with experiments confirmed the signature and potential targets of cuproptosis in hepatocellular carcinoma. Front Cell Dev Biol. 2023;11:1240390. [54] CHEN F, WEN X, WU J, et al. Comprehensive Analysis of Characteristics of Cuproptosis-Related LncRNAs Associated with Prognosis of Lung Adenocarcinoma and Tumor Immune Microenvironment. Pharmaceuticals (Basel). 2024;17(9):1244. [55] LIU T, WEI J. Validation of a Novel Cuproptosis-Related Prognostic Gene Marker and Differential Expression Associated with Lung Adenocarcinoma. Curr Issues Mol Biol. 2023;45(10):8502-8518. [56] 房慧琴,王静,郭晓慧,等.基于生物信息学探讨与铜死亡相关的早、晚期动脉粥样硬化的差异基因及潜在标志物[J].中国动脉硬化杂志,2023,31(11):938-944. [57] 贺天文,朱浩彦,鲁志兵.不稳定动脉粥样硬化斑块中铜死亡相关特征基因的鉴定[J].武汉大学学报(医学版),2024, 45(6):681-687. [58] 张玉俊,李盼,姜苗苗,等.基于铜死亡相关长链非编码RNA的子宫颈癌预后模型构建及药物敏感性分析[J].实用肿瘤杂志,2024,39(2):111-123. [59] CHEN W, HU K, LIU Y, et al. Comprehensive analysis of cuproptosis-related genes involved in prognosis and tumor microenvironment infiltration of colorectal cancer. Transl Cancer Res. 2024;13(9):4555-4573. [60] CHEN K, ZHOU A, ZHOU X, et al. Cellular Trojan Horse initiates bimetallic Fe-Cu MOF-mediated synergistic cuproptosis and ferroptosis against malignancies. Sci Adv. 2024;10(15):eadk3201. [61] 具星,李丽,郑磊,等.基于生物信息学及单细胞测序构建心肌梗死与铜死亡相关基因的风险模型并探究其免疫机制[J].中国免疫学杂志,2024,40(11):2247-2256. [62] 农琛,韦春旭,覃智,等.铜死亡相关性lncRNA在甲状腺癌中的表达模式以及预后价值[J].右江民族医学院学报, 2023,45(3):384-395. [63] GONG H, LIU Z, YUAN C, et al. Identification of cuproptosis-related lncRNAs with the significance in prognosis and immunotherapy of oral squamous cell carcinoma. Comput Biol Med. 2024;171: 108198. [64] LIU S, GE J, CHU Y, et al. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis. Front Immunol. 2023;14: 1164667. [65] JIANG J, ZHAN X, WEI J, et al. Artificial intelligence reveals dysregulation of osteosarcoma and cuproptosis-related biomarkers, PDHA1, CDKN2A and neutrophils. Sci Rep. 2023;13(1):4927. [66] ABADIN X, DE DIOS C, ZUBILLAGA M, et al. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel). 2024;13(12):1440. [67] LI B, LI Z, QIAN Y, et al. The Convergence of Sonodynamic Therapy and Cuproptosis in the Dual-Responsive Biomimetic CytoNano for Precision Mitochondrial Intervention in Cancer Treatment. Nano Lett. 2024;24(26):8107-8116. [68] YU X, LI B, YAN J, et al. Cuproptotic nanoinducer-driven proteotoxic stress potentiates cancer immunotherapy by activating the mtDNA-cGAS-STING signaling. Biomaterials. 2024;307:122512. [69] NING S, LYU M, ZHU D, et al. Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cuproptosis to Inhibit Breast Cancer Metastasis and Rechallenge. ACS Nano. 2023;17(11):10206-10217. [70] LI J, TUO D, GUO G, et al. Aberrant expression of cuproptosisrelated gene LIPT1 is associated with metabolic dysregulation of fatty acid and prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023; 149(17):15763-15779. [71] XUE Y, JIANG X, WANG J, et al. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res. 2023;11(1):2. [72] TAPIERO H, TOWNSEND DM, TEW KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386-398. [73] XU C, WEN S, DU X, et al. Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy. Pharmacol Res. 2025;211:107553. [74] GAO L, ZHANG A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 2023;14:1236063. [75] LI J, CAO F, YIN HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. [76] XUE Q, KANG R, KLIONSKY DJ, et al. Copper metabolism in cell death and autophagy. Autophagy. 2023;19(8):2175-2195. [77] LI Y, DU Y, ZHOU Y, et al. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 2023;21(1):327. [78] OVERCHUK M, WEERSINK RA, WILSON BC, et al. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano. 2023;17(9):7979-8003. [79] PASHOOTAN P, SAADATI F, FAHIMI H, et al. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm. 2024;649:123622. [80] XIA J, HU C, JI Y, et al. Copper-Loaded Nanoheterojunction Enables Superb Orthotopic Osteosarcoma Therapy via Oxidative Stress and Cell Cuproptosis. ACS Nano. 2023;17(21):21134-21152. [81] SONG S, QIU X, HUANG S, et al. Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis. ACS Appl Mater Interfaces. 2025;17(6):9074-9086. [82] ZHANG H, DONG K, CHEN M, et al. Self-Boosting Cuproptosis-Based Synergistic Antitumor Therapy by GSH-Enhanced Cocatalysis and Copper Efflux Inhibition. ACS Appl Nano Mater. 2024;7(16):19341-19354. [83] WU L, PI W, HUANG X, et al. Orchestrated metal-coordinated carrier-free celastrol hydrogel intensifies T cell activation and regulates response to immune checkpoint blockade for synergistic chemo-immunotherapy. Biomaterials. 2025;312:122723. [84] LI T, WANG D, MENG M, et al. Copper-Coordinated Covalent Organic Framework Produced a Robust Fenton-Like Effect Inducing Immunogenic Cell Death of Tumors. Macromol Rapid Commun. 2023; 44(11):e2200929. [85] PI W, WU L, LU J, et al. A metal ions-mediated natural small molecules carrier-free injectable hydrogel achieving laser-mediated photo-Fenton-like anticancer therapy by synergy apoptosis/cuproptosis/anti-inflammation. Bioact Mater. 2023;29: 98-115. [86] YANG P, YANG W, WEI Z, et al. Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed Pharmacother. 2023;163:114883. [87] CHENG Q, WANG W, LV Z, et al. Construction and validation of a prognostic and therapeutic cuproptosis- and immune-related gene signature in hepatocellular carcinoma. Transl Cancer Res. 2024;13(6):2629-2646. [88] SUN Z, CHEN X, HUANG X, et al. Cuproptosis and Immune-Related Gene Signature Predicts Immunotherapy Response and Prognosis in Lung Adenocarcinoma. Life (Basel). 2023;13(7):1583. [89] GAO X, HUANG H, PAN C, et al. Disulfiram/Copper Induces Immunogenic Cell Death and Enhances CD47 Blockade in Hepatocellular Carcinoma. Cancers (Basel). 2022;14(19):4715. [90] 牙秋艳,曾文婷,韦云丽,等.糖尿病肾病中铜死亡相关基因的生物信息学分析及靶向中药预测[J].广西医学,2024, 46(8):1226-1235. [91] 卓桂锋,罗敏,姚晓燕,等.血管性痴呆铜死亡关键差异基因的生物信息学分析及防治中药筛选[J].中草药,2023, 54(21):7120-7129. |
| [1] | 徐灿丽, 何文星, 王玉萍, 巴寅颖, 迟 莉, 王文娟, 王佳佳. 核因子κB激活激酶在自身免疫、信号通路、基因表达、肿瘤防治等领域的研究脉络与趋势[J]. 中国组织工程研究, 2026, 30(在线): 1-11. |
| [2] | 朱小龙, 张 玮, 杨 阳. 椎间盘再生与修复领域研究热点与前沿信息的可视化分析[J]. 中国组织工程研究, 2026, 30(9): 2391-2402. |
| [3] | 温发延, 李 岩, 强天明, 杨 琛, 申林明, 李亚东, 柳永明. 单侧双通道内镜技术治疗腰椎疾病:全球研究现状及变化趋势[J]. 中国组织工程研究, 2026, 30(9): 2380-2390. |
| [4] | 赖 渝, 陈跃平, 章晓云. 生物活性材料治疗骨感染的研究热点与前沿趋势[J]. 中国组织工程研究, 2026, 30(8): 2132-2144. |
| [5] | 张海文, 张 贤, 许太川, 李 超. 衰老在骨质疏松领域研究现状及趋势的文献可视化分析[J]. 中国组织工程研究, 2026, 30(6): 1580-1591. |
| [6] | 黄 杰, 曾 浩, 王文驰, 吕柱成, 崔 伟. 脂代谢影响骨质疏松症的文献可视化分析[J]. 中国组织工程研究, 2026, 30(6): 1558-1568. |
| [7] | 杨泽雨, 支 亮, 王 佳, 张婧欹, 张清芳, 王玉龙, 龙建军. 高频重复经颅磁刺激研究热点宏观角度的可视化分析[J]. 中国组织工程研究, 2026, 30(5): 1320-1330. |
| [8] | 彭 皓, 陈奇刚, 申 震. H型血管在不同骨骼疾病中研究热点的可视化分析[J]. 中国组织工程研究, 2026, 30(3): 760-769. |
| [9] | 章安琪, 化昊天, 蔡恬媛, 王子成, 孟 卓, 占效谦, 陈国茜. 全膝关节置换后疼痛:研究现状及趋势分析[J]. 中国组织工程研究, 2026, 30(3): 795-804. |
| [10] | 李 恕, 赵正宜, 曾 琴, 朱向东. 纳米羟基磷灰石诱导肿瘤免疫原性死亡[J]. 中国组织工程研究, 2026, 30(20): 5143-5151. |
| [11] | 姜 侃, 阿力木江·阿不都肉苏力, 沙拉依丁·艾尔西丁, 艾克拜尔江·艾赛提, 库提鲁克·守克尔, 艾克热木江·木合热木. 生物材料与骨再生:研究热点及有影响力的500篇文献分析[J]. 中国组织工程研究, 2026, 30(2): 528-536. |
| [12] | 邹顺一, 易 进, 曾 浩, 李剑琦, 吴钟萍. 绝经后骨质疏松症:相关信号通路的可视化分析[J]. 中国组织工程研究, 2026, 30(16): 4229-4239. |
| [13] | 魏婧怡, 王潇婧, 刘西花. 眼动追踪技术在康复领域的应用:基于CiteSpace和VOSviewer的可视化分析[J]. 中国组织工程研究, 2026, 30(16): 4265-4277. |
| [14] | 刘安南, 李建辉, 高 伟, 李 雪, 宋 婧, 邢丽萍, 李虹霖. 铁死亡与阿尔茨海默病的文献计量学分析[J]. 中国组织工程研究, 2026, 30(16): 4278-4288. |
| [15] | 王婧伊, 安 帅, 李道勤, 何 韬, 冯明利, 喇高燕, 李 征, 程静波. 膝骨关节炎阶梯化手术治疗及3种术式的应用趋势:文献计量学分析[J]. 中国组织工程研究, 2026, 30(15): 4010-4020. |
本研究揭示了铜死亡研究的前沿趋势与交叉融合特性。机器学习与生物信息学方法正深度赋能铜死亡研究,尤其在基因定位、机制解析和预后模型构建方面。化学动力疗法联合铜死亡策略展现出肿瘤治疗新前景,而中医药的特色应用则为铜死亡研究注入了新视角。文章强调肿瘤预后和微环境是研究核心,提示未来研究可借鉴跨学科方法,探索铜死亡在疾病诊疗中的创新应用,并关注中医药与铜死亡结合的潜力,为相关领域研究提供重要启示。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||