中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (1): 194-203.doi: 10.12307/2025.570
• 干细胞综述 stem cell review • 上一篇 下一篇
刘 宇1,龚森怡1,杨丽华1,李伟风1,胡玉雯1,闫钦彪1,2,郭美锦1
收稿日期:
2024-09-25
接受日期:
2024-11-22
出版日期:
2026-01-08
发布日期:
2025-07-02
通讯作者:
郭美锦,博士,教授,华东理工大学生物反应器工程国家重点实验室,上海市 200237
作者简介:
刘宇,男,2000年生,江苏省南京市人,汉族,华东理工大学在读硕士,主要从事干细胞外泌体培养及应用相关研究。
基金资助:
Liu Yu1, Gong Senyi1, Yang Lihua1, Li Weifeng1, Hu Yuwen1, Yan Qinbiao1, 2, Guo Meijin1
Received:
2024-09-25
Accepted:
2024-11-22
Online:
2026-01-08
Published:
2025-07-02
Contact:
Guo Meijin, PhD, Professor, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
About author:
Liu Yu, Master candidate, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Supported by:
摘要:
文题释义:
间充质干细胞:是一种具有自我更新能力和多向分化潜能的干细胞,存在于脂肪、脐带和骨髓等多种组织和器官中,对机体修复和免疫调节有重要作用,在组织工程和再生医学中有广泛的应用前景。中图分类号:
刘 宇, 龚森怡, 杨丽华, 李伟风, 胡玉雯, 闫钦彪, 郭美锦. 间充质干细胞来源外泌体分离、鉴定技术及应用[J]. 中国组织工程研究, 2026, 30(1): 194-203.
Liu Yu, Gong Senyi, Yang Lihua, Li Weifeng, Hu Yuwen, Yan Qinbiao, Guo Meijin. Isolation, identification, and application of exosomes derived from mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(1): 194-203.
[1] HOANG DM, PHAM PT, BACH TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272. [2] KOU M, HUANG L, YANG JJ, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13(7):16. [3] LOTFY A, ABOQUELLA NM, WANG HJ. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther. 2023;14(1):18. [4] LAI JJ, CHAU ZL, CHEN SY, et al. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv Sci (Weinh). 2022;9(15):e2103222. [5] AGRAWAL AK, AQIL F, JEYABALAN J, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627-1636. [6] ARYA SB, COLLIE SP, PARENT CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol. 2024;34(2): 90-108. [7] KRYLOVA SV, FENG DR. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337. [8] LI YB, HUANG P, NASSER MI, et al. Role of exosomes in bone and joint disease metabolism, diagnosis, and therapy. Eur J Pharm Sci. 2022;176:106262. [9] LIANG YJ, IQBAL Z, LU JP, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol Ther. 2023;31(5):1207-1224. [10] XU K, JIN YL, LI YM, et al. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem. 2022:10:844124. [11] HUANG K, GARIMELLA S, CLAY-GILMOUR A, et al. Comparison of Human Urinary Exosomes Isolated via Ultracentrifugation Alone versus Ultracentrifugation Followed by SEC Column-Purification. J Pers Med. 2022;12(3):340. [12] WANG WJ, SUN H, DUAN HJ, et al. Isolation and usage of exosomes in central nervous system diseases. CNS Neurosci Ther. 2024; 30(3):e14677. [13] ZABOROWSKI MP, BALAJ L, BREAKEFIELD XO, et al. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 2015;65(8):783-797. [14] MARTINS TS, VAZ M, HENRIQUES AG. A review on comparative studies addressing exosome isolation methods from body fluids. Anal Bioanal Chem. 2023;415(7):1239-1263. [15] ANSARI FJ, TAFTI H A, AMANZADEH A, et al. Comparison of the efficiency of ultrafiltration, precipitation, and ultracentrifugation methods for exosome isolation. Biochem Biophys Rep. 2024:38:101668. [16] PETERSON MF, OTOC N, SETHI JK, et al. Integrated systems for exosome investigation. Methods. 2015;87:31-45. [17] GHEINANI AH, VöGELI M, BAUMGARTNER U, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep. 2018;8(1):3945. [18] HUA X, ZHU Q, LIU Y, et al. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes. Anal Chim Acta. 2023:1258:341160. [19] KO M, KIM HJ, PARK J, et al. Isolation of Bovine Milk Exosome Using Electrophoretic Oscillation Assisted Tangential Flow Filtration with Antifouling of Micro-ultrafiltration Membrane Filters. ACS Appl Mater Interfaces. 2023;15(21):26069-26080. [20] VISAN KS, LOBB RJ, HAM S, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11(9):e12266. [21] XU WM, LI A, CHEN JJ, et al. Research Development on Exosome Separation Technology. J Membr Biol. 2023;256(1):25-34. [22] ALTINTAS O, SAYLAN Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem. 2023;95(44): 16029-16048. [23] CHEN JC, LI PL, ZHANG TY, et al. Review on Strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol. 2022;9:811971. [24] JANG J, JEONG H, JANG E, et al. Isolation of high-purity and high-stability exosomes from ginseng. Front Plant Sci. 2023:13:1064412. [25] SHIEH TM, TSENG YH, HSIA SM, et al. Optimization Protocol of the PEG-Based Method for OSCC-Derived Exosome Isolation and Downstream Applications. Separations. 2022;9(12):11. [26] ZHANG MD, JIN K, GAO L, et al. Methods and Technologies for Exosome Isolation and Characterization. Small Methods. 2018; 2(9):10. [27] TANG Q, XIAO XY, LI RH, et al. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules. 2022;27(19):6673. [28] PANWAR D, SHRIVASTAVA D, BHAWAL S, et al. Detection of exosomes in various biological fluids utilizing specific epitopes and directed multiple antigenic peptide antibodies. Rev Anal Chem. 2023;42(1):11. [29] GUO XN, HU F, ZHAO SH, et al. Immunomagnetic Separation Method Integrated with the Strep-Tag II System for Rapid Enrichment and Mild Release of Exosomes. Anal Chem. 2023;95(7): 3569-3576. [30] SINGH PK, PATEL A, KAFFENES A, et al. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. Micromachines (Basel). 2022;13(1):139. [31] SHEN JN, MA ZT, XU JQ, et al. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS Appl Mater Interfaces. 2024 Apr 27. doi: 10.1021/acsami.3c19396. [32] BAI JJ, WEI X, ZHANG X, et al. Microfluidic strategies for the isolation and profiling of exosomes. Trac-Trends Anal Chem. 2023; 158:12. [33] WU YS, WANG YQ, LU YJ, et al. Microfluidic Technology for the Isolation and Analysis of Exosomes. Micromachines (Basel). 2022; 13(10):1571. [34] DING T, CHENG T, ZHU XR, et al. Exosomes mediate the antibody-resistant intercellular transmission of porcine epidemic diarrhea virus. Vet Microbiol. 2023:284:109834. [35] MAHGOUB EO, ABDELLA GM. Improved exosome isolation methods from non-small lung cancer cells (NC1975) and their characterization using morphological and surface protein biomarker methods. J Cancer Res Clin Oncol. 2023;149(10):7505-7514. [36] CHEN ZH, WANG D, GU SS, et al. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol. 2024;277(Pt 2):134236. [37] IANNOTTA D, A A, LAI AD, et al. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. Small. 2024; 20(18):e2307240. [38] KOKSAL AR, EKMEN N, AYDIN Y, et al. A Single-Step Immunocapture Assay to Quantify HCC Exosomes Using the Highly Sensitive Fluorescence Nanoparticle-Tracking Analysis. J Hepatocell Carcinoma. 2023:10:1935-1954. [39] STEC A, CHODKOWSKA M, KASPRZYK-POCHOPIEN J, et al. Isolation of Citrus lemon extracellular vesicles: Development and process control using capillary electrophoresis. Food Chem. 2023:424:136333. [40] CHEN X, ZHANG WH, DOU YW, et al. Applications of asymmetrical flow field-flow fractionation for separation and characterization of polysaccharides: A review. J Chromatogr A. 2021;1635:461726. [41] JIA YW, YU L, MA TL, et al. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics. 2022;12(15): 6548-6575. [42] ZHANG WY, MENG TJ, HU J, et al. A Liquid Band-Aid with Mesenchymal Stem Cell-Derived Exosomes for Wound Healing in Mice. Curr Pharm Biotechnol. 2024 Sep 30. doi: 10.2174/0113892010331302240913114112. [43] MOGHASSEMI S, DADASHZADEH A, SOUSA MJ, et al. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater. 2024;36:126-156. [44] PARK SH, LEE EK, YIM J, et al. Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases. Biomol Ther (Seoul). 2023;31(3):253-263. [45] ZHU FK, WANG TY, WANG GJ, et al. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater. 2024;13(19): e2400293. [46] SHIREJINI SZ, INCI F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv. 2022:54:107814. [47] KIMIZ-GEBOLOGLU I, ONCEL SS. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release. 2022:347:533-543. [48] KHANABDALI R, MANDREKAR M, GRYGIEL R, et al. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biol Methods Protoc. 2024;9(1):bpae032. [49] OMRANI M, BEYRAMPOUR-BASMENJ H, JAHANBAN-ESFAHLAN R, et al. Global trend in exosome isolation and application: an update concept in management of diseases. Mol Cell Biochem. 2024;479(3):679-691. [50] BOK EY, SEO SY, LEE HG, et al. Exosomes isolation from bovine serum: qualitative and quantitative comparison between ultracentrifugation, combination ultracentrifugation and size exclusion chromatography, and exoEasy methods. J Anim Sci Technol. 2024;66(5):1021-1033. [51] ISHII N, NOGUCHI K, IKEMOTO MJ, et al. Optimizing Exosome Preparation Based on Size and Morphology: Insights From Electron Microscopy. Microsc Microanal. 2023;29(6): 2068-2079. [52] LIU Z, XUE HW, CHEN Q, et al. A method for extraction of exosomes from breast tumour cells and characterisation by transmission electron microscopy. J Microsc. 2023;292(3):117-122. [53] LOGOZZI M, OREFICE NS, DI RAIMO R, et al. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers (Basel). 2023; 15(11):2878. [54] HOFMANN L, MEDYANY V, EZIC J, et al. Cargo and Functional Profile of Saliva-Derived Exosomes Reveal Biomarkers Specific for Head and Neck Cancer. Front Med (Lausanne). 2022:9:904295. [55] XU S T, ZHANG Y X, LIU S L, et al. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes. Biochem Biophys Res Commun. 2023:682: 199-206. [56] HASSAN PA, RANA S, VERMA G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir. 2015; 31(1):3-12. [57] ZHOU XH, XU H, XU C, et al. Hepatocellular carcinoma-derived exosomal miRNA-761 regulates the tumor microenvironment by targeting the SOCS2/JAK2/STAT3 pathway. World J Emerg Med. 2022;13(5):379-385. [58] NAKAMACHI Y, UTO K, HAYASHI S, et al. Exosomes derived from synovial fibroblasts from patients with rheumatoid arthritis promote macrophage migration that can be suppressed by miR-124-3p. Heliyon. 2023; 9(4):e14986. [59] LEE KM, SEO EC, LEE JH, et al. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci. 2023; 24(11):9418. [60] HUICA R, HUICA S, MOLDOVEANU E. Flow cytometric assessment of circulating microparticles - towards a more objective analysis. Rom Biotech Lett. 2011;16(3):6271-6277. [61] ARRAUD N, GOUNOU C, TURPIN D, et al. Fluorescence Triggering: A General Strategy for Enumerating and Phenotyping Extracellular Vesicles by Flow Cytometry. Cytometry A. 2016;89A(2):184-195. [62] LIU HS, TIAN Y, XUE CF, et al. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J Extracell Vesicles. 2022;11(4):e12206. [63] HAN KY, CHANG JH, AZAR DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett. 2020;27(10):979-988. [64] SHEN ZR, SHAO JJ, SUN JQ, et al. Exosomes released by melanocytes modulate fibroblasts to promote keloid formation: a pilot study. J Zhejiang Univ Sci B. 2022;23(8):699-704. [65] YIN SH, JIA FM, RAN LQ, et al. Exosomes derived from idiopathic gingival fibroma fibroblasts regulate gingival fibroblast proliferation and apoptosis. Oral Dis. 2021; 27(7):1789-1795. [66] WEI HX, CHEN JY, WANG SL, et al. A Nanodrug Consisting Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In Vitro. Int J Nanomed. 2019;14:8603-8610. [67] WU SJ, ZHAO YL, ZHANG ZT, et al. The Advances and Applications of Characterization Technique for Exosomes: From Dynamic Light Scattering to Super-Resolution Imaging Technology. Photonics. 2024;11(2):21. [68] AHN SH, RYU SW, CHOI H, et al. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells. 2022;45(5):284-290. [69] LIN BQ, LEI YM, WANG JX, et al. Microfluidic-Based Exosome Analysis for Liquid Biopsy. Small Methods. 2021;5(3):e2001131. [70] NOLAN JP, JONES JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017; 28(3):256-262. [71] GUPTA A, KASHTE S, GUPTA M, et al. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Human Cell. 2020;33(4): 907-918. [72] NATASHA G, GUNDOGAN B, TAN A, et al. Exosomes as Immunotheranostic Nanoparticles. Clin Ther. 2014;36(6):820-829. [73] SMITH JA, DANIEL R. Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. Aids. 2016;30(17):2611-2616. [74] LEE JH, PARK J, LEE JW. Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. Transfusion. 2019;59:876-883. [75] ZHAO AG, SHAH KR, CROMER B, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells Int. 2020;2020:10. [76] YI KH, WINAYANUWATTIKUN W, KIM SY, et al. Skin boosters: Definitions and varied classifications. Skin Res Technol. 2024;30(3):e13627. [77] ZHOU Y, WEN LL, LI YF, et al. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res. 2022; 17(1):194-202. [78] KIM S, LEE S K, KIM H, et al. Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Accelerate Skin Cell Proliferation. Int J Mol Sci. 2018; 19(10):16. [79] MA T, FU B C, YANG X, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):10847-10854. [80] HU P, CHIARINI A, WU J, et al. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. Burns Trauma. 2021;9: tkab003. [81] SUN CK, CHEN CH, CHANG CL, et al. Melatonin treatment enhances therapeutic effects of exosomes against acute liver ischemia-reperfusion injury. Am J Transl Res. 2017;9(4):1543-1560. [82] KWON HH, YANG SH, LEE J, et al. Combination Treatment with Human Adipose Tissue Stem Cell-derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-week Prospective, Double-blind, Randomized, Split-face Study. Acta Derm Venereol. 2020;100(18):adv00310. [83] BURKE J, HUNTER M, KOLHE R, et al. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med. 2016;5(1):27. [84] HU HX, DONG LL, BU ZH, et al. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles. 2020;9(1):1778883. [85] JIANG SP, TIAN GZ, YANG Z, et al. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater. 2021;6(9): 2711-2728. [86] REN SH, LIN YY, LIU WY, et al. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol. 2023:11:1136453. [87] 刘闯,谭龙旺,周禾山,等.脂肪间充质干细胞外泌体治疗创伤性中枢神经系统损伤[J].中国组织工程研究,2023,27(19): 3061-3069. [88] DING M, SHEN Y, WANG P, et al. Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer’s Disease. Neurochem Res. 2018; 43(11):2165-2177. [89] LEE M, BAN JJ, YANG S, et al. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer’s disease. Brain Res. 2018;1691: 87-93. [90] SONG JY, SUN TT, TANG Z, et al. Exosomes derived from smooth muscle cells ameliorate diabetes-induced erectile dysfunction by inhibiting fibrosis and modulating the NO/cGMP pathway. J Cell Mol Med. 2020;24(22): 13289-13302. [91] MITSIALIS V, WALL S, LIU P, et al. Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn’s Disease. Gastroenterology. 2020; 159(2):591-608.e10. [92] NISHIDA A, INOUE R, INATOMI O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018; 11(1):1-10. [93] LI YJ, XU QW, XU CH, et al. MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m6A Modification. Mol Neurobiol. 2022;59(8):5222-5235. [94] WU XR, LAN P, WU XJ, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight. 2019; 4(24):e131273. [95] WANG GY, JOEL MDM, YUAN JT, et al. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils. Inflammopharmacology. 2020;28(2):603-616. [96] CAI X, ZHANG ZY, YUAN JT, et al. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Res Ther. 2021;12(1):416. [97] KALOGERIS T, BAINES CP, KRENZ M, et al. Ischemia/Reperfusion. Compr Physiol. 2016; 7(1):113-170. [98] REN Y, WU Y, HE WS, et al. Exosomes secreted from bone marrow mesenchymal stem cells suppress cardiomyocyte hypertrophy through Hippo-YAP pathway in heart failure. Genet Mol Biol. 2023;46(1):e20220221. [99] WANG ZC, GAO D, WANG SJ, et al. Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biol Int. 2021;45(11):2211-2225. [100] LIU L, JIN X, HU CF, et al. Exosomes Derived from Mesenchymal Stem Cells Rescue Myocardial Ischaemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy Via AMPK and Akt Pathways. Cell Physiol Biochem. 2017;43(1):52-68. [101] LIN ZJ, WU YL, XU YT, et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer. 2022;21(1):179. [102] LOU GH, SONG XL, YANG F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015:8:122. [103] LOU GH, CHEN L, XIA CX, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res. 2020;39(1):4. [104] SHARIF S, GHAHREMANI MH, SOLEIMANI M. Delivery of Exogenous miR-124 to Glioblastoma Multiform Cells by Wharton’s Jelly Mesenchymal Stem Cells Decreases Cell Proliferation and Migration, and Confers Chemosensitivity. Stem Cell Rev Rep. 2018;14(2):236-246. [105] CHEN HY, SUN T, JIANG C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release. 2022:348:572-589. [106] YANG Q, LI SS, OU HB, et al. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology. 2024;22(1):41. [107] ZHAO M, LIU SY, WANG CS, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Mitochondrial Damage and Inflammation by Stabilizing Mitochondrial DNA. ACS Nano. 2021;15(1): 1519-1538. [108] 王双敏,汪显耀,何志旭.工程化间充质干细胞来源外泌体在靶向递送抗肿瘤药物中的应用与问题[J].中国组织工程研究,2025, 29(23):4975-4983. [109] DEHNAVI S, KHODADADI A, ASADIRAD A, et al. Loading Ovalbumin into Mesenchymal Stem Cell-Derived Exosomes as a Nanoscale Carrier with Immunomodulatory Potential for Allergen-Specific Immunotherapy. Rep Biochem Mol Biol. 2023;11(4):626-634. |
[1] | 杨 肖, 白月辉, 赵甜甜, 王东昊, 赵 琛, 袁 硕. 颞下颌关节骨关节炎软骨退变:机制及再生的挑战[J]. 中国组织工程研究, 2026, 30(4): 926-935. |
[2] | 余诗宇, 俞苏桐, 徐 杨, 镇祥燕, 韩凤选. 组织工程治疗策略在口腔黏膜下纤维化中的研究与应用进展[J]. 中国组织工程研究, 2026, 30(4): 936-948. |
[3] | 王宇航, 张 涵, 张超晶, 寇绪容, 井桐桐, 林日梅, 刘鑫宇, 娄石磊, 阎 慧, 孙 聪. 姜黄素提取及姜黄素纳米粒的制备及优化[J]. 中国组织工程研究, 2026, 30(2): 362-374. |
[4] | 谭凤怡, 谢嘉敏, 潘振锋, 张新旭, 郑泽态, 曾祉莹, 周艳芳. 胶原蛋白联合微针治疗皮肤光老化的作用及机制[J]. 中国组织工程研究, 2026, 30(2): 451-458. |
[5] | 于漫亚, 崔 兴. 骨髓微环境中不同细胞对多发性骨髓瘤骨病外泌体环状RNA的贡献及相互作用[J]. 中国组织工程研究, 2026, 30(1): 101-110. |
[6] | 陈启衡, 翁土军, 彭 江. 二甲基氧化甘氨酸对人骨髓间充质干细胞成骨、成脂分化及线粒体自噬的影响[J]. 中国组织工程研究, 2026, 30(1): 50-57. |
[7] | 袁为远, 雷秦袆, 李秀琪, 卢铁柱, 傅子文, 梁志丽, 季韶洋, 李一佳, 任 宇. 脂肪来源间充质干细胞及外泌体对地塞米松诱导肌肉减少症小鼠的治疗作用[J]. 中国组织工程研究, 2026, 30(1): 58-67. |
[8] | 马文静, 张晋豫, 姜明霞, 修冰水, 白 睿, 刘玉含, 陈旭义, 袁增强, 刘志强. 无支架三维人脐带间充质干细胞分泌组修复小鼠皮肤损伤[J]. 中国组织工程研究, 2026, 30(1): 68-77. |
[9] | 牟彦郦, 胡安春, 须文驰, 陈盼盼, 陈 浩, 赵淑云, 黄官友, 陈小娟. 人脐血富血小板血浆、单个核细胞及间充质干细胞修复大鼠薄型子宫内膜[J]. 中国组织工程研究, 2026, 30(1): 78-92. |
[10] | 吴芷菁, 李加利, 张佳昕, 王唐蓉, 郑煜洲, 孙梓暄. α-酮戊二酸工程化小细胞外囊泡延缓皮肤衰老[J]. 中国组织工程研究, 2026, 30(1): 120-129. |
[11] | 徐海超, 罗丽花, 潘乙怀. 牙髓干细胞及衍生产物在牙髓再生中的应用与进展[J]. 中国组织工程研究, 2026, 30(1): 153-162. |
[12] | 张钊伟, 陈欧子乐, 白明茹, 汪成林. 牙源性间充质干细胞分泌生物活性物质用于骨修复的治疗潜力[J]. 中国组织工程研究, 2026, 30(1): 163-174. |
[13] | 刘 念, 董昕玥, 王菘芃, 徐英江, 张晓明. 干细胞外泌体和生物材料辅助外泌体修复骨缺损[J]. 中国组织工程研究, 2026, 30(1): 175-183. |
[14] | 吕茹月, 顾路路, 刘 茜, 周思仪, 李贝贝, 薛乐天, 孙 鹏. 外泌体分泌调控机制及在生物医学中的应用前景[J]. 中国组织工程研究, 2026, 30(1): 184-193. |
[15] | 罗文彬, 李若云, 潘超凡, 罗长江. 工程化外泌体修复组织损伤:应用潜力及优异的生物稳定性和靶向特异性[J]. 中国组织工程研究, 2026, 30(1): 204-217. |
1.1.7 检索策略 中英文数据库检索策略,见图1。
1.1.8 检索文献量 初步检索到英文文献1 655篇,中文文献137篇。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
间充质干细胞:是一种具有自我更新能力和多向分化潜能的干细胞,存在于脂肪、脐带和骨髓等多种组织和器官中,对机体修复和免疫调节有重要作用,在组织工程和再生医学中有广泛的应用前景。
外泌体:是一种直径在30-150 nm的细胞外囊泡,由细胞在正常或异常状态下分泌,能够传递蛋白质、核酸和脂质等生物活性物质至靶细胞以介导细胞间通讯,从而调节细胞与组织的功能。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
面对间充质干细胞外泌体难以规模化生产的问题,在综合考虑外泌体获取的纯度和产量、外泌体的稳定性与生物活性,以及分离纯化方案所需时间与成本等因素的基础上,可以从以下方面技术研究:①研究外泌体分泌或形成的细胞培养工艺。从细胞培养开始保持外泌体分泌过程的稳定,建立动态监测培养环境条件与代谢指标的三维培养间充质干细胞的工艺,保证批次间相对数量和质量的稳定。②开发高效和规模化外泌体分离纯化技术。外泌体应用的关键是最终产物的产量,通过开发高产量外泌体制备方法的同时追求外泌体更高的纯度。③外泌体分离方法应兼顾下游的分析与应用,在分离方案开发的过程中尽可能考虑到后续临床转化的需求,如外泌体的收集、储存和制剂等技术。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||