中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (29): 4612-4619.doi: 10.12307/2024.530

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

Fe-Co/ZIF-8@SLC-0111-HA复合纳米平台加强肿瘤化学动力学的可行性

王振鑫1,周  鹏2,褚福超1,张大振1,袁  峰3   

  1. 1徐州医科大学第一临床医学院,江苏省徐州市  221006;2徐州医科大学附属淮安医院,淮安市第二人民医院骨科,江苏省淮安市  223002;3徐州医科大学附属医院骨科,江苏省徐州市  221006
  • 收稿日期:2023-09-22 接受日期:2023-11-04 出版日期:2024-10-18 发布日期:2024-03-22
  • 通讯作者: 袁峰,教授,博士,徐州医科大学附属医院骨科,江苏省徐州市 221006
  • 作者简介:王振鑫,男,1998年生,江苏省宿迁市人,汉族,徐州医科大学在读硕士,主要从事纳米材料及骨科基础与临床研究。
  • 基金资助:
    江苏省卫健委重点项目(ZD2022064),项目负责人:袁峰;江苏省中医药科技发展计划项目(MS2021102),项目负责人:袁峰;骨组织再生与数字技术重点实验室建设项目(PT0306),项目负责人:袁峰;江苏省研究生科研与实践创新计划项目(KYCX23_2982),项目负责人:王振鑫

Fe-Co/ZIF-8@SLC-0111-HA composite nanoplatform enhances feasibility of tumor chemodynamic therapy

Wang Zhenxin1, Zhou Peng2, Chu Fuchao1, Zhang Dazhen1, Yuan Feng3   

  1. 1First Clinical Medical College of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China; 2Department of Orthopedics, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an Second People’s Hospital, Huai’an 223002, Jiangsu Province, China; 3Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
  • Received:2023-09-22 Accepted:2023-11-04 Online:2024-10-18 Published:2024-03-22
  • Contact: Yuan Feng, Professor, MD, Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
  • About author:Wang Zhenxin, Master candidate, First Clinical Medical College of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
  • Supported by:
    Key Project of Jiangsu Provincial Health Commission Medical Research, No. ZD2022064 (to YF); Jiangsu Province Traditional Chinese Medicine Technology Development Plan, No. MS2021102 (to YF); Key Laboratory Construction Project for Bone Tissue Regeneration and Digital Medicine, No. PT0306 (to YF); Jiangsu Province Graduate Research Innovation Program Project, No. KYCX23_2982 (to WZX)

摘要:


文题释义:

化学动力学疗法:使用过渡金属纳米材料作为催化剂,利用过氧化氢催化芬顿或类芬顿反应发生,产生剧毒羟基自由基(•OH),从而达到杀伤肿瘤目的的一种新型肿瘤治疗策略。
小分子SLC-0111:是一种新型碳酸酐酶9抑制剂,可以促进肿瘤细胞胞内质子堆积,并且将pH值维持在芬顿或类芬顿反应合适的阈值范围内,使过渡金属离子可以发挥其最大催化效能,促进更多·OH 的生成,用于加强化学动力学疗法的疗效。


背景:常用金属离子的低催化活性与缺乏靶向性等问题严重限制了化学动力学疗法在肿瘤治疗中的应用。另外,虽然通过对复合纳米平台进行表面功能化来赋予其靶向肿瘤的功能,但是肿瘤细胞内酸性不足也严重削弱了化学动力学疗法的疗效。

目的:制备新型复合纳米平台,评估其在细胞水平上增强化学动力学疗法的可行性。
方法:通过离子交换反应和自组装作用合成了掺杂二价铁离子和二价钴离子的载SLC-0111(一种碳酸酐酶9抑制剂)沸石咪唑骨架-8(Fe-Co/ZIF-8@SLC-0111),并在表面加载透明质酸,得到目标纳米颗粒 Fe-Co/ZIF-8@SLC-0111-HA(记为FC-S),同时合成不载 SLC-0111的纳米颗粒 Fe-Co/ZIF-8-HA (记为FC)。测试FC-S的粒径、Zeta 电位、表面形貌、体外活性氧产生、消耗谷胱甘肽的能力。分别以人骨肉瘤细胞 MG-63和小鼠成纤维细胞L929为实验对象,采用CCK-8法检测FC-S的细胞毒性。以人骨肉瘤细胞MG-63为实验对象,检测FC-S的细胞内化;在加入H2O2的情况下,FC-S、FC对细胞内pH值、碳酸酐酶9蛋白表达、细胞活性与凋亡、细胞内活性氧与谷胱甘肽含量、细胞线粒体膜电位的影响。

结果与结论:①FC-S具有菱形十二面体结构,尺寸均匀,分散良好,平均粒径为323 nm,Zeta电位约为-11.1 mV,体外可产生活性氧并消耗谷胱甘肽。②FC-S以时间依赖的方式在MG-63细胞内累积,并且能成功从溶酶体中逃逸。当FC-S质量浓度≤20 µg/mL时对MG-63细胞与L929细胞无明显的细胞毒性,后续实验选择20 µg/mL FC-S作用于MG-63细胞。③与FC组比较,FC-S组MG-63细胞内碳酸酐酶9蛋白表达降低(P < 0.01)、细胞内酸性环境增强、细胞内活性氧含量增加(P < 0.001)、细胞线粒体损伤加重、死细胞数量增加、细胞凋亡率升高(P < 0.001)。④结果表明,FC-S复合纳米平台能够有效改善肿瘤细胞内弱酸性微环境、提升胞内活性氧产生水平,增强化学动力学疗法的疗效。

https://orcid.org/0009-0002-0518-7719(王振鑫)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 纳米平台, 化学动力学疗法, 碳酸酐酶9, 碳酸酐酶9抑制剂, 活性氧, 细胞凋亡

Abstract: BACKGROUND: The low catalytic activity and lack of targeting of commonly used metal ions have severely limited the clinical application of chemodynamic therapy in tumor treatment. On the other hand, although the composite nanoplatforms are endowed with tumor-targeting functions by surface functionalization, the lack of tumor microenvironment acidity also severely weakens the efficacy of chemodynamic therapy.
OBJECTIVE: To prepare novel composite nanoplatforms and assess their feasibility to enhance the effects of chemodynamic therapy at the cellular level.
METHODS: SLC-0111-loaded zeolite imidazole framework-8 doped with divalent iron ions (Fe2+) and divalent cobalt ions (Co2+) (Fe-Co/ZIF-8@SLC-0111) was synthesized by ion-exchange reaction and self-assembly, and loaded with hyaluronic acid (HA) by electrostatic adsorption, followed by obtaining the target nanoparticles Fe-Co/ZIF-8@SLC-0111-HA (abbreviated as FC-S). Meanwhile, nanoparticles Fe-Co/ZIF-8-HA (abbreviated as FC) without SLC-0111 were synthesized by the same method. The nanocomposite platform was tested for particle size, zeta potential, surface morphology, in vitro reactive oxygen species generation, and ability to consume glutathione. Human osteosarcoma cell MG-63 and mouse fibroblast cell L929 were used as experimental subjects. The cytotoxicity of FC-S was detected by CCK-8 assay. Human osteosarcoma cell MG-63 was used as the experimental object to detect the cell internalization of FC-S. In addition to H2O2, the effects of FC-S and FC on intracellular pH, carbonic anhydrase 9 protein expression, cell viability and apoptosis, intracellular reactive oxygen species and glutathione content, and mitochondrial membrane potential were investigated.
RESULTS AND CONCLUSION: (1) The FC-S composite nanoplatform was successfully prepared with a well-defined rhombic dodecahedral structure, uniform size and good dispersion. Its particle size was about 323 nm; zeta potential was about -11.1 mV, and the nanoplatform had a certain reactive oxygen species generation capacity in vitro. (2) FC-S nanoplatforms accumulated intracellularly in a time-dependent manner and could successfully escape from lysosomes. When the mass concentration of FC-S was ≤ 20 µg/mL, there was no obvious cytotoxicity to MG-63 cells and L929 cells, and 20 µg/mL FC-S was selected to act on MG-63 cells in subsequent experiments. (3) Compared with FC group, the protein expression of carbonic anhydrase 9 in MG-63 cells in FC-S group was decreased (P < 0.01); the intracellular acidic environment was enhanced; the content of reactive oxygen species was increased (P < 0.001); the mitochondrial damage was aggravated; the number of dead cells was increased, and the apoptosis rate was increased (P < 0.001). (4) The results indicate that FC-S, as a novel composite nanoplatform, can effectively improve the weakly acidic microenvironment in tumor cells and enhance the level of intracellular reactive oxygen species production, thus enhancing the efficacy of chemodynamic therapy.

Key words: nanoplatform, chemodynamic therapy, carbonic anhydrase 9, carbonic anhydrase 9 inhibitor, reactive oxygen species, apoptosis

中图分类号: