[1] DASTGIRI S, STONE DH, LE-HA C, et al. Prevalence and secular trend of congenital anomalies in Glasgow, UK. Arch Dis Child. 2002;86(4):257-263.
[2] TENNANT PW, PEARCE MS, BYTHELL M, et al. 20-year survival of children born with congenital anomalies: a population-based study. Lancet. 2010; 375(9715):649-656.
[3] LIU Y, CHEN S, ZÜHLKE L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455-463.
[4] OTTAVIANI G, BUJA LM. Update on congenital heart disease and sudden infant/perinatal death: from history to future trends. J Clin Pathol. 2017; 70(7):555-562.
[5] WILLIAMS K, CARSON J, LO C. Genetics of Congenital Heart Disease. Biomolecules. 2019;9(12):879.
[6] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.
[7] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5): 861-872.
[8] DIMOS JT, RODOLFA KT, NIAKAN KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218-1221.
[9] KAMBAL A, MITCHELL G, CARY W, et al. Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Mol Ther. 2011;19(3):584-593.
[10] MORDWINKIN NM, BURRIDGE PW, WU JC. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 2013;6(1):22-30.
[11] AVIOR Y, SAGI I, BENVENISTY N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016;17(3):170-182.
[12] NGUYEN HN, BYERS B, CORD B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell. 2011;8(3):267-280.
[13] YANG J, LI S, HE XB, et al. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener. 2016;11(1):39.
[14] YOSHIDA Y, YAMANAKA S. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. Circ Res. 2017;120(12):1958-1968.
[15] ROSE RA, JIANG H, WANG X, et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells. 2008; 26(11):2884-2892.
[16] KEHAT I, KENYAGIN-KARSENTI D, SNIR M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407-414.
[17] VERMA V, PURNAMAWATI K, MANASI, et al. Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: a review. Cell Signal. 2013;25(5):1096-1107.
[18] TALKHABI M, AGHDAMI N, BAHARVAND H. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci. 2016;145: 98-113.
[19] BURRIDGE PW, MATSA E, SHUKLA P, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855-860.
[20] PAIGE SL, PLONOWSKA K, XU A, et al. Molecular regulation of cardiomyocyte differentiation. Circ Res. 2015;116(2):341-353.
[21] GRAICHEN R, XU X, BRAAM SR, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 2008;76(4):357-370.
[22] LIAN X, ZHANG J, AZARIN SM, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162-175.
[23] CAO N, LIANG H, HUANG J, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23(9): 1119-1132.
[24] MÜLLER M, SEUFFERLEIN T, ILLING A, et al. Modelling human channelopathies using induced pluripotent stem cells: a comprehensive review. Stem Cells Int. 2013;2013:496501.
[25] ROSS SB, FRASER ST, SEMSARIAN C. Induced pluripotent stem cell technology and inherited arrhythmia syndromes. Heart Rhythm. 2018; 15(1):137-144.
[26] MORETTI A, BELLIN M, WELLING A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010; 363(15):1397-1409.
[27] MATSA E, RAJAMOHAN D, DICK E, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32(8):952-962.
[28] SPENCER CI, BABA S, NAKAMURA K, et al. Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia. Stem Cell Reports. 2014;3(2):269-281.
[29] FATIMA A, KAIFENG S, DITTMANN S, et al. The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients. PLoS One. 2013;8(12):e83005.
[30] YAMAMOTO Y, MAKIYAMA T, HARITA T, et al. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet. 2017;26(9): 1670-1677.
[31] LODOLA F, MORONE D, DENEGRI M, et al. Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2016;7(10):e2393.
[32] JUNG CB, MORETTI A, MEDEROS Y SCHNITZLER M, et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. 2012;4(3):180-191.
[33] ITZHAKI I, MAIZELS L, HUBER I, et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 2012;60(11):990-1000.
[34] FATIMA A, XU G, SHAO K, et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem. 2011;28(4):579-592.
[35] NOVAK A, BARAD L, ZEEVI-LEVIN N, et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012;16(3):468-482.
[36] MOSS AJ, SCHWARTZ PJ, CRAMPTON RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3): 1136-1144.
[37] ESCHENHAGEN T, CARRIER L. Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review. Pflugers Arch. 2019;471(5):755-768.
[38] BUIKEMA JW, WU SM. Untangling the Biology of Genetic Cardiomyopathies with Pluripotent Stem Cell Disease Models. Curr Cardiol Rep. 2017;19(4):30.
[39] WILLOTT RH, GOMES AV, CHANG AN, et al. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol. 2010;48(5):882-892.
[40] SUN N, YAZAWA M, LIU J, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012; 4(130):130ra47.
[41] SIU CW, LEE YK, HO JC, et al. Modeling of lamin A/C mutation premature cardiac aging using patient‐specific induced pluripotent stem cells. Aging (Albany NY). 2012;4(11):803-822.
[42] PEREA-GIL I, SEEGER T, BRUYNEEL AAN, et al. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J. 2022;43(36): 3477-3489.
[43] LIN B, LI Y, HAN L, et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8(5):457-466.
[44] HINSON JT, CHOPRA A, NAFISSI N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349(6251):982-986.
[45] STRECKFUSS-BÖMEKE K, TIBURCY M, FOMIN A, et al. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2017;113:9-21.
[46] MAK TSH, LEE YK, TANG CS, et al. Coverage and diagnostic yield of Whole Exome Sequencing for the Evaluation of Cases with Dilated and Hypertrophic Cardiomyopathy. Sci Rep. 2018;8(1):10846.
[47] SEIDMAN JG, SEIDMAN C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557-567.
[48] LAN F, LEE AS, LIANG P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101-113.
[49] LIANG P, LAN F, LEE AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127(16):1677-1691.
[50] LI S, PAN H, TAN C, et al. Mitochondrial Dysfunctions Contribute to Hypertrophic Cardiomyopathy in Patient iPSC-Derived Cardiomyocytes with MT-RNR2 Mutation. Stem Cell Reports. 2018;10(3):808-821.
[51] DEMENTYEVA EV, MEDVEDEV SP, KOVALENKO VR, et al. Applying Patient-Specific Induced Pluripotent Stem Cells to Create a Model of Hypertrophic Cardiomyopathy. Biochemistry (Mosc). 2019;84(3):291-298.
[52] HAN L, LI Y, TCHAO J, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104(2):258-269.
[53] TE RIJDT WP, JONGBLOED JD, DE BOER RA, et al. Clinical utility gene card for: arrhythmogenic right ventricular cardiomyopathy (ARVC). Eur J Hum Genet. 2014;22(2). doi: 10.1038/ejhg.2013.124.
[54] KIM C, WONG J, WEN J, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105-110.
[55] MA D, WEI H, LU J, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34(15):1122-1133.
[56] WANG G, MCCAIN ML, YANG L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616-623.
[57] KODO K, ONG SG, JAHANBANI F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031-1042.
[58] CARVAJAL-VERGARA X, SEVILLA A, D’SOUZA SL, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465(7299):808-812.
[59] SARAF A, BOOK WM, NELSON TJ, et al. Hypoplastic left heart syndrome: From bedside to bench and back. J Mol Cell Cardiol. 2019;135:109-118.
[60] JIANG Y, HABIBOLLAH S, TILGNER K, et al. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med. 2014;3(4):416-423.
[61] TOMITA-MITCHELL A, STAMM KD, MAHNKE DK, et al. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics. 2016;48(12): 912-921.
[62] YANG C, XU Y, YU M, et al. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet. 2017;26(16):3031-3045.
[63] LI J, CAO YY, MA XJ, et al. Thymic derived iPs cells can be differentiated into cardiomyocytes. Front Biosci (Landmark Ed). 2015;20(6):964-974.
[64] CAO Y, XU J, WEN J, et al. Generation of a Urine-Derived Ips Cell Line from a Patient with a Ventricular Septal Defect and Heart Failure and the Robust Differentiation of These Cells to Cardiomyocytes via Small Molecules. Cell Physiol Biochem. 2018;50(2):538-551.
[65] JIA L, LIMENG D, XIAOYIN T, et al. A Novel Splicing Mutation c.335-1 G > A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect Through miR-19 and PYK2. Stem Cell Rev Rep. 2022;18(8): 2646-2661.
[66] YE L, YU Y, ZHAO ZA, et al. Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect. Cardiovasc Res. 2022;118(3):859-871.
[67] WISE-FABEROWSKI L, ASIJA R, MCELHINNEY DB. Tetralogy of Fallot: Everything you wanted to know but were afraid to ask. Paediatr Anaesth. 2019;29(5):475-482.
[68] SRIVASTAVA D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126(6):1037-1048.
[69] PENG R, ZHENG J, XIE HN, et al. Genetic anomalies in fetuses with tetralogy of Fallot by using high-definition chromosomal microarray analysis. Cardiovasc Ultrasound. 2019;17(1):8.
[70] GRUNERT M, APPELT S, SCHÖNHALS S, et al. Induced pluripotent stem cells of patients with Tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation. Sci Rep. 2020;10(1):10921.
[71] KARAKIKES I, AMEEN M, TERMGLINCHAN V, et al. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015;117(1):80-88.
[72] CHONG JJ, YANG X, DON CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273-277.
[73] KREUTZER J, VIEHRIG M, PÖLÖNEN RP, et al. Pneumatic unidirectional cell stretching device for mechanobiological studies of cardiomyocytes. Biomech Model Mechanobiol. 2020;19(1):291-303.
[74] GARBERN JC, HELMAN A, SEREDA R, et al. Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via p53-Induced Quiescence. Circulation. 2020;141(4):285-300.
[75] VELDHUIZEN J, CUTTS J, BRAFMAN DA, et al. Engineering anisotropic human stem cell-derived three-dimensional cardiac tissue on-a-chip. Biomaterials. 2020;256:120195.
[76] WU P, DENG G, SAI X, et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep. 2021; 41(6):BSR20200833. |