中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (30): 4763-4768.doi: 10.12307/2023.831

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

骨水泥弥散类型对强化椎体生物力学特性影响的有限元分析

吴智华1,2,李  任2,潘慧玲2,范凤杰2,江晓兵3,唐福宇1,2   

  1. 1广州中医药大学,广东省广州市  510405;2 柳州市中医医院脊柱外科,广西壮族自治区柳州市  545000;3广州中医药大学第一附属医院脊柱外科,广东省广州市  510405
  • 收稿日期:2022-09-24 接受日期:2022-11-16 出版日期:2023-10-28 发布日期:2023-04-01
  • 通讯作者: 唐福宇,中医骨伤科学博士,主任医师,教授,广州中医药大学,广东省广州市 510405;柳州市中医医院脊柱外科,广西壮族自治区柳州市 545000
  • 作者简介:吴智华,男,1996 年生,福建省莆田市人,汉族,硕士,主要从事脊柱脊髓疾病的中医药诊疗研究。
  • 基金资助:
    广西自然科学基金面上项目(2020GXNSFAA259082),项目负责人:唐福宇;柳州市科技计划项目(2019BE10602),项目负责人:唐福宇

Finite element analysis of biomechanical effects of bone cement dispersion type on the reinforced vertebrae

Wu Zhihua1, 2, Li Ren2, Pan Huiling2, Fan Fengjie2, Jiang Xiaobing3, Tang Fuyu1, 2   

  1. 1Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; 2Department of Spine Surgery, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China; 3Department of Spinal Surgery, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
  • Received:2022-09-24 Accepted:2022-11-16 Online:2023-10-28 Published:2023-04-01
  • Contact: Tang Fuyu, MD, Chief physician, Professor, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; Department of Spine Surgery, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
  • About author:Wu Zhihua, Master, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China; Department of Spine Surgery, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Guangxi Zhuang Autonomous Region, No. 2020GXNSFAA259082 (to TFY); Liuzhou Science and Technology Program, No. 2019BE10602 (to TFY)

摘要:


文题释义:

椎体强化:包括经皮椎体成形和经皮椎体后凸成形,已被广泛应用于保守治疗效果不佳或不适合保守治疗的骨质疏松性椎体压缩骨折患者,并取得了显著疗效。椎体强化治疗能快速缓解疼痛、减少卧床休息,在最短的时间内恢复患者正常生活,提高患者生活质量,减少并发症的发生率。

有限元分析:是一种有效的离散化数值计算方法,可对多种结构进行力学分析,显示模型受力时内部的应力和变形过程,将复杂的问题简单化。有限元法无需大量动物标本,无需消耗大量材料,能够长期重复实验,对于生物力学的模拟有着无法比拟的优势,已被广泛应用于医疗、生物力学等领域。


背景:经皮椎体强化治疗骨质疏松性椎体压缩骨折时,强化椎内骨水泥弥散类型主要为中部分离、中部融合、前部分离和不均匀分离4种,目前尚无研究对比这4种骨水泥弥散类型对强化椎体生物力学特性的影响。
目的:运用三维有限元法分析骨水泥弥散类型对强化椎体生物力学特性的影响。
方法:构建T12骨质疏松性椎体压缩骨折三维有限元模型,然后模拟双侧椎体成形手术,其中骨水泥分中部分离、中部融合、前部分离和不均匀分离4种弥散类型,设置材料属性参数、边界条件、施加载荷(在T10上终板持续施加垂直向下260 N载荷,同时分别施加前屈、后伸、左右侧屈、左右旋转10 N·m力矩),分别导入LS-DYNA软件求解。

结果与结论:①在所有加载条件下,不均匀分离模型的骨水泥应力最大;左侧屈曲时,不均匀分离模型的骨水泥最大应力比中部分离模型、中部融合模型、前部分离模型分别高出4.4,8.6,4.8倍;中部分离、前部分离、不均匀分离模型左侧屈时的骨水泥最大米塞斯应力最大,中部融合模型右侧屈时的骨水泥最大米塞斯应力最大,所有模型左右旋转时的骨水泥最大米塞斯应力最小;②左右旋转时,不均匀分离模型的松质骨-水泥界面的最大米塞斯应力小于其他模型,其他工况下各模型的松质骨-水泥界面的最大米塞斯应力相似;4种模型左右侧屈时的松质骨-水泥界面的最大米塞斯应力最大;③各模型T12上终板和下终板的最大米塞斯应力趋势相似,且相同工况下无明显差异;在所有加载条件下,各模型间T12上终板和下终板的最大米塞斯应力无明显差异;在所有加载条件下,各模型间T11/12、T12/L1椎间盘最大米塞斯应力无明显差异;④当位移3.5 mm时,中部分离模型的载荷最小,为40 N;中部融合和前部分离模型的载荷为50 N;不均匀分离模型的载荷最大,是中部分离模型的2倍;⑤结果显示,骨水泥不均匀分离会显著增加骨水泥应力,因此椎体强化术中应使骨水泥在椎体骨折区域充分且对称分布,并适当增大骨水泥与松质骨界面接触的面积。

https://orcid.org/0000-0002-8149-8837(吴智华)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 骨水泥, 骨质疏松, 椎体压缩骨折, 经皮椎体强化, 有限元分析, 骨水泥弥散类型

Abstract: BACKGROUND: When percutaneous vertebral augmentation is performed for osteoporotic vertebral compression fractures, the four main types of cement dispersion type on the reinforced vertebrae are central separation, central integration, anterior separation, and uneven separation. At present, no relevant biomechanical studies have been found to compare the biomechanical effects of four cement dispersion types on the reinforced vertebrae. 
OBJECTIVE: To analyze the effects of cement dispersion types on biomechanical characteristics of the reinforced vertebrae using the three-dimensional finite element analysis method. 
METHODS: A three-dimensional finite element model of the thoracolumbar segment of thoracic 12 osteoporotic vertebral compression fracture was constructed, and then four models were obtained by simulating four cement dispersion types: central separation, central integration, anterior separation and uneven separation. The material property parameters, and boundary conditions were set, and loads (a vertical downward load of 260 N continuously on the T10 upper-end plate, and simultaneously, 10 N • m moments of flexion, extension, left and right bending, and left and right rotation) were applied, and data were imported to LS-DYNA software for a solution.
RESULTS AND CONCLUSION: (1) Under all loading conditions, the stress of the uneven separation model was the largest. The maximum stress of bone cement in the uneven separation model was 4.4, 8.6 and 4.8 times higher than that in the central separation model, the central integration model and the anterior separation model respectively. The maximum Von Mises stress of bone cement was the largest in the left flexion model with central separation, anterior separation and uneven separation. The maximum Von Mises stress of bone cement in the right flexion of the central integration model was the largest. The maximum Von Mises stress of bone cement was the smallest when all models were rotated left and right. (2) The maximum Von Mises stress at the cancellous bone cement interface of the uneven separation model was smaller than that of the other models when rotated from left to right. The maximum Von Mises stress at the cancellous bone cement interface of each model was similar under other working conditions. The maximum Von Mises stress at the cancellous bone cement interface was the largest during the left and right flexion of the four models. (3) The maximum Von Mises stress trends of upper endplates and lower endplates of T12 models were similar, and there was no significant difference under the same working conditions. Under all loading conditions, there was no significant difference in the maximum Von Mises stress of the T12 upper endplate and lower endplate between models. Under all loading conditions, there was no significant difference in the maximum Von Mises stress of T11/12 and T12/L1 intervertebral discs among the models. (4) When the displacement was 3.5 mm, the load of the central separation model was the minimum, which was 40 N. The load of the central integration and anterior separation models was 50 N. The load of the uneven separation model was the largest, which was twice that of the central separation model. (5) The results show that the uneven cement separation significantly increases cement stress, so percutaneous vertebral augmentation should be performed with the adequate and symmetrical distribution of cement in the vertebral fracture area and appropriately increased in the area of contact between the cement and cancellous bone interface. 

Key words: bone cement, osteoporotic, vertebral compression fracture, percutaneous vertebral augmentation, finite element analysis, bone cement dispersion type

中图分类号: