Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (2): 314-321.doi: 10.3969/j.issn.2095-4344.2014.02.025
Previous Articles Next Articles
Liu Jian-feng1, Ding Yan-ping2, Wang Jian-lin1, Shao Bao-ping1
Received:2013-11-19
Online:2014-01-08
Published:2014-01-08
Contact:
Shao Bao-ping, M.D., Associate professor, School of Life Sciences, Institute of Zoology, Lanzhou University, Lanzhou 730000, Gansu Province, China
About author:Liu Jian-feng, Studying for master’s degree, School of Life Sciences, Institute of Zoology, Lanzhou University, Lanzhou 730000, Gansu Province, China
Supported by:the National Natural Science Foundation of China, No. 31000190, 31060141; Fundamental Research Funds for the Central Universities, No. lzujbky-2012-102
CLC Number:
Liu Jian-feng, Ding Yan-ping, Wang Jian-lin, Shao Bao-ping. Distribution, function and regulation mechanism of aquaporin in the brain[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(2): 314-321.
2.1 脑中水通道蛋白1的表达、功能及其调节机制 2.1.1 脑中水通道蛋白1的表达及功能 水通道蛋白1主要表达在哺乳动物脑脉络丛顶膜,与 Na+-K+-ATP 酶共同定位于该组织中。此外,最近有人发现水通道蛋白1表达于鼠嗅神经鞘胶质细胞及人的胶质细胞[7-10];且在啮齿动物三叉神经节神经元上也观察到水通道蛋白1的免疫反应产物及mRNA的表达[11-15]。但是,到目前为止,水通道蛋白1在人的三叉神经系统或在啮齿动物三叉神经其他更具体的部位未见表达的报道[16]。另外,据报道,水通道蛋白1在哺乳动物脑中的表达具有时空差异性,但对于为何出现该差异性表达还不清楚。例如,早期报道大鼠与小鼠的胶质细胞中均有水通道蛋白4的表达,但均未见水通道蛋白1的表达[17-19];相反,有人报道在人的胶质细胞中同时发现水通道蛋白4与水通道蛋白1的表达[8-9]。上述结果表明,水通道蛋白1在神经系统中发挥着重要作用,并且其在不同物种脑中的表达具有多样性。 脑中水通道蛋白1主要参与脑脊液的形成并调节其水和离子的平衡[20]。MacAulay等[21]发现水通道蛋白1能够使脉络丛细胞探测脑脊液的渗透性从而对水分子转运作出调整;而且,由于脑积水与脑脊液相关,通过调节水通道蛋白1可为治疗该相关疾病提供一种新的思路[22]。然而,在星形胶质瘤中,水通道蛋白1在肿瘤组织血管内皮细胞膜和肿瘤性星形胶质细胞膜上表达是异常高的;在脉络丛肿瘤中,随着水通道蛋白1的表达上调,而脑脊液的分泌增加[23],其再次表明水通道蛋白1在脑脊液的分泌中发挥着重要作用。 此外,有趣的是,水通道蛋白1在外围血管内皮细胞中大量表达,而在正常脑毛细血管内皮细胞中未曾发现[24-25],但是,在培养的不含胶质细胞终板的脑瘤毛细血管内皮细胞中却有水通道蛋白1的表达[26];Dolman等[24]进一步研究表明,在正常脑组织中,星形胶质细胞可能抑制水通道蛋白1在脑毛细血管内皮细胞中的表达,而在脑星形胶质瘤组织中,由于缺乏功能正常的星形胶质细胞,从而在其内皮细胞中出现大量水通道蛋白1的表达。研究发现在星形细胞瘤中随着肿瘤恶性程度的增加,水通道蛋白1表达也明显增 加[27]。 由此推测,胶质细胞终板可能传递某些信号给附近内皮细胞,而阻止正常脑组织毛细血管内皮细胞水通道蛋白1的表达。另外,有研究报道在其他类型的细胞中,气体小分子CO2, NO, NH3 及O2也可通过水通道蛋白1[28]。 2.1.2 脑中水通道蛋白1的调节机制 水通道蛋白1作为离子通道时,其功能依赖于细胞内cGMP,该离子通道是通过cGMP信号降低脉络丛基底到顶膜的净流速来激活的[29]。Conner等[30]发现调节水通道蛋白1的异常途径,即通过低渗环境直接刺激后由于瞬时受体电位通道导致细胞内部钙离子数目升高;其瞬时受体电位通道能够触发水通道蛋白1向细胞膜处迁移,这种迁移可改变水的运输而调节细胞体积的变化。在生物系统中,钙离子起着第二信使的作用,并且在体内普遍存在;钙离子在水通道蛋白1迁移调节方面作用的发现,为脑中水流快速调节机制的研究提供了理论依据;且水流的快速调节对于维持体内稳态及病理生理进程至关重 要[31]。Kreegpuu等[32]应用磷酸化位点数据库分析了人、大鼠和小鼠水通道蛋白1的氨基酸序列,表明在机体组织中通过分泌激素也可调节水通道蛋白1的表达。其为探讨水通道蛋白维持脑功能的调节机制提供了一个新的研究方向。最近Ozu等[通过压力模型得出结论水通道蛋白1是一个既定的开始通道,并由膜张力进行控制。33] 2.2 脑中水通道蛋白4的表达、功能及其调节机制 2.2.1 脑中水通道蛋白4的表达及功能 水通道蛋白4是哺乳动物脑内最重要的水通道蛋白,该蛋白是率先从大鼠肺组织中发现并分布于电兴奋组织中[34],包括脑、脊髓、视网膜、内耳和骨骼肌[19, 34-39]。水通道蛋白4在兴奋性细胞中不表达,但存在于中枢神经系统的星形胶质细胞和室管膜细胞等上皮支持细胞中[40]。水通道蛋白4在脑实质与主要液体隔室之间大量表达,即星形胶质细胞足突(血-脑)、胶质界膜(脑-蛛网膜下腔的脑脊液)及室管膜细胞与室管膜下星形胶质细胞之间(脑-脑室的脑脊液)[19, 36]。 尽管水通道蛋白4的表达集中在内皮细胞邻近的星形胶质细胞足突中,对于缺乏内皮的细胞(如培养的星形胶质细胞和恶性星形胶质细胞[41-43],胶质界膜和室周器官[18, 36]),而水通道蛋白4会在整个星形胶质细胞膜上重新分布,其表明内皮细胞可能发出信号给星形胶质细胞来上调水通道蛋白4在该细胞膜上的表达;水通道蛋白4主要分布于毛细血管内皮细胞、软脑膜和脑室室管膜侧的胶质细胞膜或足突上,呈明显的极性现象,提示水通道蛋白4的分布与脑内水分的转运具有同向性,其对脑脊液的分泌和重吸收也起着非常重要的作用;而分布于海马与小脑神经细胞上的水通道蛋白4主要参与调节细胞间隙的大小以及细胞间隙K+的浓度,进一步与钾离子通道Kir4.1联系在一起协同调节相关神经元的兴奋性[-45]。44 在不同疾病中水通道蛋白4的表达有所不同。通常在与脑水肿相关的胶质细胞中水通道蛋白4的表达上调。例如,水通道蛋白4在存在脑水肿的星形细胞瘤中过表达[42-43];啮齿动物在大脑局部贫血或创伤性脑损伤后水通道蛋白4的表达也上调[46-48],上述研究进一步表明水通道蛋白4在脑水肿的形成与消除中发挥着非常重要的作用。而水通道蛋白4在反应性星形胶质细胞或反应性小胶质细胞中的表达也上调[41, 49],其表明水通道蛋白4的表达可能与胶质瘢痕的形成相关。 早期有人从脑中克隆出了水通道蛋白4的2个剪接变异体(水通道蛋白4-M1和水通道蛋白4-M23);最近,Alikina等[50]进一步发现这两个异构体由3个mRNA编码,即水通道蛋白4-M1由M1 mRNA编码,而水通道蛋白4-M23由M23 mRNA及M23X mRNA编码;几乎同时,Sorbo等[51]通过质谱分析法首次从大鼠脑中分离出水通道蛋白4的第3个异构体,上述异构体在细胞膜上形成正交排列阵列[52-53];且可通过M23:M1的摩尔比来预测水通道蛋白4分布阵列的大小[54],此阵列甚至可包含成百个四聚体[53]。 水通道蛋白4的分布为何要形成正交排列阵列尚且未知。但是,与不互相作用的水通道蛋白4四聚体相比,四聚体正交连接能使水通道蛋白4更有效地锚定在胞内蛋白上,如α-互养蛋白[45]。例如,要将水通道蛋白4限制在星形胶质细胞终板处表达,与一个阵列一个锚定点相比,相互独立的水通道蛋白4四聚体可能需要各自在胞内的锚定点。 此外,在视神经脊髓炎患者血清中观察到水通道蛋白4自身抗体,处于髓鞘脱失状态[28];应用视神经脊髓炎血清对老鼠大脑进行免疫染色,其出现了类似于上述水通道蛋白4的免疫学特征,而水通道蛋白4敲除鼠中没有其免疫反应;视神经脊髓炎血清也能对表达的水通道蛋白4免疫染色,但在培养的水通道蛋白4缺陷型细胞中则没有该特征;最近已证实水通道蛋白4抗体能够作为专一性对视神经脊髓炎和其他中枢神经系统自身免疫疾病进行区分诊断的试剂[55]。 有报道提出水通道蛋白4自身抗体能够诱发视神经脊髓炎,可能是由于抑制了水通道蛋白4表达[56-57]。在视神经脊髓炎中发现水通道蛋白4自身抗体是个有趣的发现,其暗示其他水通道蛋白的自身抗体可能对其他疾病起作用。 除视神经脊髓炎之外,水通道蛋白4基因还能够影响慢性眼高压鼠中胶质细胞活性并导致视网膜损伤[58]。其表明,对水通道蛋白4的研究也可为眼疾病的研究与治疗提供一个重要方向。 最近,Promeneur等[建立了脑型疟鼠模型,与水通道蛋白4敲除鼠对比发现,水通道蛋白4敲除鼠表现出病情更加严重并产生更大的脑水肿,尽管2组小鼠血脑屏障均受到破坏,但依然可说明水通道蛋白4对脑型疟疾病有一定的保护功能,这也为水通道蛋白的功能研究提供一个新的思路。59] 2.2.2 脑中水通道蛋白4的调节机制 α-互养蛋白可能是调节水通道蛋白4定位的一种关键蛋白,研究认为水通道蛋白4是通过羧基端与胶质细胞膜上的α-互养蛋白结合并固定其上的,当敲除α-互养蛋白基因时,水通道蛋白4在脑内血管周围和软膜的胶质细胞膜上表达显著降低,同时胶质细胞的足突出现水肿,但水通道蛋白4在其他部位的表达不变[60]。 水通道蛋白4分子在脑中的分布与数目都有严格的要求[61]。相互作用的蛋白质、组织缺氧、渗透性、氨产生及转录信号为脑中水通道蛋白4的表达提供了长时程调节[62];短时程调节是主要通过受体介导插入细胞质膜,其中多数是G蛋白偶联受体[62],这些受体的活化剂包括多肽激素、前列腺素、儿茶酚胺及氨基酸[62],而其受体与配体相互作用的结果是水通道蛋白4分子出现磷酸化或去磷酸[62]。 研究发现,蛋白激酶C可识别水通道蛋白4基因编码肽链上潜在的磷酸化位点并使其去磷酸化,从而调节水通道蛋白4的渗透性[62];水通道蛋白4的磷酸化属于环单磷酸腺苷依赖性,当其处于磷酸化状态时,所在膜对水的转运远高于其非磷酸化状态;腺苷酸环化酶在某些因素影响下被激活后会上调细胞内cAMP的含量,继而活化蛋白激酶C,蛋白激酶C再催化水通道蛋白4的丝氨酸磷酸化,最终增加膜对水的通透性。上述表明,体内存在潜在水通道蛋白4调节,并使水通道蛋白4能可逆地开放或停止血脑屏障结构对水的转运。 水通道蛋白4可逆磷酸化导致转运蛋白构象变化,该变化对于膜转运[63-64]、水通道蛋白4渗透性调节及正交排列阵列的形成至关重要[65]。水通道蛋白4 D环的Ser180区域是调节蛋白激酶C磷酸化的位点,能够激活蛋白激酶C从而降低水通道蛋白4的功能[62];B环上Ser111区域磷酸化能够增加水通道蛋白4渗透率,通过Ser111残基磷酸化已证明谷氨酸与水通道蛋白4表达相关[66];而谷氨酸与星形胶质细胞的代谢型谷氨酸受体Ⅰ(mGluR)结合,从而触发胞内钙库释放并激活水通道蛋白4[66-67];另一个磷酸化位点Ser321已被确定在水通道蛋白4的C末端,其对于该蛋白的分布及通道的膜的稳定性起着重要作用[68]。 也有报道金属,如汞、锌和铜能通过一个未知胞内信号途径与D环的Cys178残基相互作用也可降低水通道蛋白4的渗透率[67]。 有证据表明,精氨酸加压素能够调节各种组织中的水通道蛋白4[62, 69-70]。精氨酸加压素结合V1受体能激活磷脂酶C及Ca2+和蛋白激酶C的合成释放[62]。在缺血性脑卒中鼠模型中,精氨酸加压素与V1的拮抗作用将导致水通道蛋白4的上调,而含水量、伤害及脑水肿程度均被降 低[69]。上述研究结果表明,可以通过精氨酸加压素与V1受体的拮抗作用来调节水通道蛋白4的表达,其为探讨神经保护和缺血诱发细胞毒性脑水肿的治疗提供一个重要思路。 此外,血管内皮生长因子也参与水通道蛋白4的表达调节,但它并不直接影响水通道蛋白4的表达。血管内皮生长因子诱发血管源性脑水肿后,胶质细胞中的水通道蛋白4将进行重新分配,从而促进该细胞对多余液体的重吸收[71]。最近,Lee等[在小鼠中发现纹状体内的腺苷信号能够调控水通道蛋白4的表达;活化的T细胞核因子也参与水通道蛋白4的转录调控[。综上所述,水通道蛋白4的表达是受多种途径调控的,其确切的调控机制还有待更加深入、系统地研究。573]72] 2.3 脑中水通道蛋白9的表达、功能及其调节机制 2.3.1 脑中水通道蛋白9的表达及功能 水通道蛋白9是Kuriyama等[74]在1997年进行人类脂肪组织基因序列系统分析过程中首次发现的。在脑组织中,其分布于脑室周围室管膜细胞、蛛网膜下腔和脑室周围的星形胶质细胞、白质及海马的星形胶质细胞、下丘脑视上核、室旁核和视交叉上核。 有研究发现,在脑出血早期,水通道蛋白9的表达降低,能够减少细胞间液进入细胞内并延缓细胞内水肿的形成,而在缺血1 h后,水通道蛋白9的表达迅速增高,促进脑水肿的形成[75]。水通道蛋白9在脑组织中的分布提示其对脑组织水的转运和脑脊液循环发挥着重要作用,其可能对渗透压的变化起调节作用,可能是渗透压感受器或受体,并与下丘脑的神经内分泌功能及脑水肿的产生密切相关[74]。 然而,水通道蛋白9与大脑能量代谢、水电解质平衡密切相关[76]。有研究进一步表明,水通道蛋白9表达的神经元绝大部分是儿茶酚胺神经元,在大鼠和小鼠中这些神经元以表达酪氨酸羟化酶为特征[76],且在儿茶酚胺神经元中免疫组化产物的分布与该区域其mRNA的分布存在着较强的相关性,而儿茶酚胺神经元与神经肽Y等其他类型神经元相连接参与动物体能量代谢的调节。事实上,儿茶酚胺神经元的电位活动在甘油和乳酸浓度上升时被改变,包括摄食行为的最终改变。由此推测,在脑中水通道蛋白9作为代谢通道参与了能量代谢,而且,Zelenina[31]的最新研究报道也进一步证实了此观点。 水通道蛋白9的存在可促进甘油和单羧酸盐的扩散,为神经元的能量代谢提供底物,进一步而言其对控制大脑能量代谢起着非常重要的作用;并且,水通道蛋白9在多巴胺神经元和星型胶质细胞的线粒体中也存在。 有趣的是,该研究结果表明水通道蛋白9在脑细胞中有2种亚型存在,其小亚型(26 ku)存在于线粒体内膜中,而大亚型(30 ku)存在于细胞膜中[5];通过葡萄糖敏感型儿茶酚胺能神经元内和线粒体内均有水通道蛋白9免疫反应产物存在的报道[77-78],其为上述观点进一步提供了有力证据。通常在一些脑疾病中,例如,大鼠脑梗死边缘区的胶质细胞中,水通道蛋白9的表达是上调的,其有助于再灌注损伤后乳酸的清除[77]。 此外,从水通道蛋白9的别名“神经元通道”可以看出,作为水甘油通道蛋白家族的水通道蛋白9具有广泛的通透性特征。水通道蛋白9不仅对水具有通透性,而且对尿素、甘油、甘露醇及山梨糖醇也具有通透性;另外,水通道蛋白9可以透过嘌呤(腺嘌呤)、嘧啶(尿嘧啶和化学疗法中使用的氟尿嘧啶)及一元羧酸(乳酸和β-羟基丁酸)[79];有研究表明,氨也可以透过水通道蛋白9,但是,其环形糖、核苷、谷氨酸盐及甘氨酸不能透过水通道蛋白9[79]。有趣的是,水通道蛋白9对一元羧酸,比如乳酸和β-羟基丁酸的通透效率取决于pH,尤其在pH为5.5时通透性急剧增加[79],其表明单羧酸盐只有在质子化时才能通过水通道蛋白9。水通道蛋白9还可以促进类金属材料的运输,这表明水通道蛋白9可能是哺乳动物细胞摄取亚砷酸盐的主要途径[34]。进一步研究表明,缺血再灌注早期水通道蛋白9表达升高为保护性作用,后期表达下降可能与再灌注血液供应以及能量代谢恢复有关[80]。最近,有人用小片段RNA定向敲除胶质细胞中水通道蛋白9后,发现甘油吸收减弱并且与糖摄取与氧化代谢相 关[80];Liu等[81]也进一步证实水通道蛋白9与体内能量代谢密切相关。上述研究表明,水通道蛋白9不仅参与水的运输与平衡,而且在能量代谢中发挥着非常重要的作用。 2.3.2 脑中水通道蛋白9的调节机制 到目前为止,有关脑水通道蛋白9调节机制的相关研究远少于水通道蛋白1和水通道蛋白4的。在国内外仅可见到为数不多的相关研究报道,例如,水通道蛋白9可直接通过磷脂酶Cβ和蛋白激酶Cξ的介导磷酸化;也可通过Rac1和蛋白激酶Cξ介导途径激活G蛋白偶联甲酰肽受体而使水通道蛋白9磷酸化[82];无需蛋白质合成的蛋白激酶C途径的激活将会下调水通道蛋白9 mRNA和蛋白质的表达[83];与水通道蛋白4相比较,丁酰环磷酸腺苷通过对蛋白激酶A的激活会诱导星型胶质细胞中水通道蛋白9 mRNA和蛋白质表达量的减少,且在渗透性应激后,P38MAP激酶与水通道蛋白9表达量的升高相关[84]。 进一步研究表明,在局部脑缺血中,MAP激酶通路的激活,将会导致其梗死周围星型胶质细胞水通道蛋白9表达的增加[85]。"
| [1] Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules.J Biol Chem. 1988;263(30): 15634-15642.[2] Gorelick DA, Praetorius J, Tsunenari T, et al. Aquaporin-11: a channel protein lacking apparent transport function expressed in brain.BMC Biochem. 2006;7: 14.[3] Shin I, Kim HJ, Lee JE, et al. Aquaporin7 expression during perinatal development of mouse brain.Neurosci Lett. 2006; 409(2): 106-111.[4] Yang M, Gao F, Liu H, et al. Hyperosmotic induction of aquaporin expression in rat astrocytes through a different MAPK pathway.J Cell Biochem. 2013;114(1): 111-119.[5] 邵宝平, 余华晟, 王建林. AQP9在脑疾病中的研究进展[J]. 动物医学进展,2012,33(1):87-91.[6] Badaut J. Aquaglyceroporin 9 in brain pathologies.Neuroscience. 2010;168(4): 1047-1057.[7] Shields SD, Moore KD, Phelps PE, et al. Olfactory ensheathing glia express aquaporin 1. J Comp Neurol. 2010;518(21): 4329-4341.[8] Perez E, Barrachina M, Rodriguez A, et al. Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease.Brain Res. 2007;1128(1): 164-174.[9] Satoh J, Tabunoki H, Yamamura T, et al. Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo.Neuropathology. 2007;27(3): 245-256.[10] Moftakhar P, Lynch MD, Pomakian JL, et al. Aquaporin expression in the brains of patients with or without cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2010;69(12): 1201-1209.[11] Shields SD, Mazario J, Skinner K, et al. Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain. 2007;131(1-2): 8-20.[12] Matsumoto I, Nagamatsu N, Arai S, et al. Identification of candidate genes involved in somatosensory functions of cranial sensory ganglia.Brain Res Mol Brain Res. 2004;126(1): 98-102.[13] Oshio K, Watanabe H, Yan D, et al. Impaired pain sensation in mice lacking Aquaporin-1 water channels.Biochem Biophys Res Commun. 2006;341(4): 1022-1028.[14] Nandasena BG, Suzuki A, Aita M, et al. Immunolocalization of aquaporin-1 in the mechanoreceptive Ruffini endings in the periodontal ligament.Brain Res. 2007;1157: 32-40.[15] Borsani E, Bernardi S, Albertini R, et al. Alterations of AQP2 expression in trigeminal ganglia in a murine inflammation model.Neurosci Lett. 2009;449(3): 183-188.[16] Gao J, Tan M, Gu M, et al. Cellular localization of aquaporin-1 in the human and mouse trigeminal systems.PLoS One. 2012;7(9): e46379.[17] Frigeri A, Gropper MA, Umenishi F, et al. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995;108 (Pt 9): 2993-3002.[18] Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17(1): 171-180.[19] Wen H, Nagelhus EA, Amiry-Moghaddam M, et al. Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci. 1999;11(3): 935-945.[20] Oshio K, Watanabe H, Song Y, et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1.FASEB J. 2005;19(1): 76-78.[21] MacAulay N, Zeuthen T. Water transport between CNS compartments: contributions of aquaporins and cotransporters.Neuroscience. 2010;168(4): 941-956.[22] Tait MJ, Saadoun S, Bell BA, et al. Water movements in the brain: role of aquaporins.Trends Neurosci. 2008;31(1):37-43.[23] Longatti P, Basaldella L, Orvieto E, et al. Aquaporin(s) expression in choroid plexus tumours.Pediatr Neurosurg. 2006;42(4): 228-233.[24] Dolman D, Drndarski S, Abbott NJ, et al. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem. 2005;93(4): 825-833.[25] Nielsen S, Smith BL, Christensen EI, et al. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A. 1993;90(15): 7275-7279.[26] Saadoun S, Papadopoulos MC, Davies DC, et al. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer. 2002;87(6): 621-623.[27] 孟肖利, 陈劲草, 王正峰, 等. AQP-1和VEGF在星形细胞瘤中的表达及其意义[J]. 中国临床神经外科杂志,2007,12(5): 276-277,287.[28] Abreu-Rodriguez I, Sanchez Silva R, Martins AP, et al. Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1alpha.PLoS One. 2011;6(12): e28385.[29] Boassa D, Stamer WD, Yool AJ. Ion channel function of aquaporin-1 natively expressed in choroid plexus.J Neurosci. 2006;26(30): 7811-7819.[30] Conner MT, Conner AC, Brown JE, et al. Membrane trafficking of aquaporin 1 is mediated by protein kinase C via microtubules and regulated by tonicity.Biochemistry. 2010; 49(5): 821-823.[31] Zelenina M. Regulation of brain aquaporins.Neurochem Int. 2010;57(4): 468-488.[32] Kreegipuu A, Blom N, Brunak S. PhosphoBase, a database of phosphorylation sites: release 2.0.Nucleic Acids Res. 1999; 27(1): 237-239.[33] Ozu M, Dorr RA, Gutierrez F, et al. Human AQP1 Is a Constitutively Open Channel that Closes by a Membrane- Tension-Mediated Mechanism.Biophys J. 2013;104(1): 85-95.[34] Hasegawa H, Ma T, Skach W, et al. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues.J Biol Chem. 1994;269(8): 5497-5500.[35] Yang B, Verbavatz JM, Song Y, et al. Skeletal muscle function and water permeability in aquaporin-4 deficient mice.Am J Physiol Cell Physiol. 2000;278(6): C1108-1115.[36] Rash JE, Yasumura T, Hudson CS, et al. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998;95(20): 11981-11986.[37] Li J, Patil RV, Verkman AS. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels.Invest Ophthalmol Vis Sci. 2002;43(2): 573-579.[38] Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels.J Biol Chem. 2001;276(33): 31233-31237.[39] Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience. 2004; 127(3): 685-693.[40] Eckhard A, Gleiser C, Rask-Andersen H, et al. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.Cell Tissue Res. 2012; 350(1): 27-43.[41] Saadoun S, Papadopoulos MC, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation.J Cell Sci. 2005;118(Pt 24): 5691-5698.[42] Saadoun S, Papadopoulos MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72(2): 262-265.[43] Warth A, Simon P, Capper D, et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res. 2007;85(6): 1336-1346.[44] Nagelhus EA, Horio Y, Inanobe A, et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia. 1999;26(1): 47-54.[45] Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A. 2003;100(23): 13615-13620.[46] Chen CH, Xue R, Zhang J, et al. Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging.Neurocrit Care. 2007;7(1): 92-100.[47] Meng S, Qiao M, Lin L, et al. Correspondence of AQP4 expression and hypoxic-ischaemic brain oedema monitored by magnetic resonance imaging in the immature and juvenile rat.Eur J Neurosci. 2004;19(8): 2261-2269.[48] Sun MC, Honey CR, Berk C, et al. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg. 2003; 98(3): 565-569.[49] Auguste KI, Jin S, Uchida K, et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury.FASEB J. 2007;21(1): 108-116.[50] Alikina TY, Illarionova NB, Zelenin SM, et al. Identification of new M23A mRNA of mouse aquaporin-4 expressed in brain, liver, and kidney. Biochemistry (Mosc). 2012;77(5):425-434.[51] Sorbo JG, Fleckenstein B, Ottersen OP, et al. Small-scale purification and mass spectrometry analysis reveal a third aquaporin-4 protein isoform of 36 kDa in rat brain. J Neurosci Methods. 2012;211(1): 31-39.[52] Rash JE, Davidson KG, Yasumura T, et al. Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly.Neuroscience. 2004;129(4): 915-934.[53] Furman CS, Gorelick-Feldman DA, Davidson KG, et al. Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A. 2003;100(23): 13609-13614.[54] Jin BJ, Rossi A, Verkman AS. Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms.Biophys J. 2011;100(12): 2936-2945.[55] Long Y, Qiu W, Hu X, et al. Anti-aquaporin-4 antibody in Chinese patients with central nervous system inflammatory demyelinating disorders.Clin Neurol Neurosurg. 2012;114(8): 1131-1134.[56] Matiello M, Jacob A, Wingerchuk DM, et al. Neuromyelitis optica.Curr Opin Neurol. 2007;20(3): 255-260.[57] Wingerchuk DM. Neuromyelitis optica: new findings on pathogenesis. Int Rev Neurobiol. 2007;79: 665-688.[58] Luo SS, Chen Q, Yu DY, et al. The effect of AQP4 gene on the activation of retinal glial cells in chronic high intraocular pressure mice.Zhonghua Yan Ke Za Zhi. 2012;48(7): 598-603.[59] Promeneur D, Lunde LK, Amiry-Moghaddam M, et al. Protective role of brain water channel AQP4 in murine cerebral malaria. Proc Natl Acad Sci U S A. 2013;110(3): 1035-1040.[60] Puwarawuttipanit W, Bragg AD, Frydenlund DS, et al. Differential effect of alpha-syntrophin knockout on aquaporin-4 and Kir4.1 expression in retinal macroglial cells in mice.Neuroscience. 2006;137(1): 165-175.[61] Aoyama M, Kakita H, Kato S, et al. Region-specific expression of a water channel protein, aquaporin 4, on brain astrocytes.J Neurosci Res. 2012;90(12): 2272-2280.[62] Gunnarson E, Zelenina M, Aperia A. Regulation of brain aquaporins. Neuroscience. 2004;129(4): 947-955.[63] Madrid R, Le Maout S, Barrault MB, et al. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin-adaptor complexes.EMBO J. 2001;20(24):7008-7021.[64] Kadohira I, Abe Y, Nuriya M, et al. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes. Biochem Biophys Res Commun. 2008;377(2): 463-468.[65] Silberstein C, Bouley R, Huang Y, et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol. 2004;287(3): F501-511.[66] Maurer F, Medcalf RL. Plasminogen activator inhibitor type 2 gene induction by tumor necrosis factor and phorbol ester involves transcriptional and post-transcriptional events. Identification of a functional nonameric AU-rich motif in the 3'-untranslated region.J Biol Chem. 1996;271(42): 26074-26080.[67] Yukutake Y, Yasui M. Regulation of water permeability through aquaporin-4.Neuroscience. 2010;168(4): 885-891.[68] Hoffert JD, Pisitkun T, Wang G, et al. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A. 2006;103(18): 7159-7164.[69] Liu X, Nakayama S, Amiry-Moghaddam M, et al. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke.Neurocrit Care. 2010;12(1): 124-131.[70] Taya K, Gulsen S, Okuno K, et al. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102: 425-429.[71] Yang L, Wang X, Zhen S, et al. Aquaporin-4 upregulated expression in glioma tissue is a reaction to glioma-associated edema induced by vascular endothelial growth factor.Oncol Rep. 2012;28(5): 1633-1638.[72] Lee MR, Ruby CL, Hinton DJ, et al. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.Neuropsychopharmacology. 2013;38(3): 437-445.[73] Yi MH, Lee YS, Kang JW, et al. NFAT5-Dependent Expression of AQP4 in Astrocytes.Cell Mol Neurobiol. 2013; 33(2): 223-232.[74] Kuriyama H, Kawamoto S, Ishida N, et al. Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun. 1997;241(1): 53-58.[75] Dibas A, Yang MH, Bobich J, et al. Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line.Pharmacol Res. 2007;55(5): 378-384.[76] Badaut J, Petit JM, Brunet JF, et al. Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells.Neuroscience. 2004;128(1): 27-38.[77] Badaut J, Regli L. Distribution and possible roles of aquaporin 9 in the brain.Neuroscience. 2004;129(4): 971-981.[78] Amiry-Moghaddam M, Lindland H, Zelenin S, et al. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane.FASEB J. 2005;19(11): 1459-1467.[79] Tsukaguchi H, Shayakul C, Berger UV, et al. Molecular characterization of a broad selectivity neutral solute channel.J Biol Chem. 1998;273(38): 24737-24743.[80] Liu Z, Shen J, Carbrey JM, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9.Proc Natl Acad Sci U S A. 2002;99(9): 6053-6058.[81] Loitto VM, Huang C, Sigal YJ, et al. Filopodia are induced by aquaporin-9 expression.Exp Cell Res. 2007;313(7): 1295-1306.[82] Karlsson T, Glogauer M, Ellen RP, et al. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization.J Leukoc Biol. 2011;90(5): 963-973.[83] Yamamoto N, Sobue K, Miyachi T, et al. Differential regulation of aquaporin expression in astrocytes by protein kinase C.Brain Res Mol Brain Res. 2001;95(1-2): 110-116.[84] Yamamoto N, Sobue K, Fujita M, et al. Differential regulation of aquaporin-5 and -9 expression in astrocytes by protein kinase A.Brain Res Mol Brain Res. 2002;104(1): 96-102.[85] Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes.J Biol Chem. 2003;278(45): 44525-44534. |
| [1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
| [2] | Zhang Chao, Lü Xin. Heterotopic ossification after acetabular fracture fixation: risk factors, prevention and treatment progress [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1434-1439. |
| [3] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
| [4] | Wang Debin, Bi Zhenggang. Related problems in anatomy mechanics, injury characteristics, fixed repair and three-dimensional technology application for olecranon fracture-dislocations [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1446-1451. |
| [5] | Ji Zhixiang, Lan Changgong. Polymorphism of urate transporter in gout and its correlation with gout treatment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1290-1298. |
| [6] | Yuan Mei, Zhang Xinxin, Guo Yisha, Bi Xia. Diagnostic potential of circulating microRNA in vascular cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1299-1304. |
| [7] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
| [8] | Wan Ran, Shi Xu, Liu Jingsong, Wang Yansong. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1088-1095. |
| [9] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Therapeutic target and application prospects of oral squamous cell carcinoma stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1096-1103. |
| [10] | Zhao Min, Feng Liuxiang, Chen Yao, Gu Xia, Wang Pingyi, Li Yimei, Li Wenhua. Exosomes as a disease marker under hypoxic conditions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1104-1108. |
| [11] | Xie Wenjia, Xia Tianjiao, Zhou Qingyun, Liu Yujia, Gu Xiaoping. Role of microglia-mediated neuronal injury in neurodegenerative diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1109-1115. |
| [12] | Li Shanshan, Guo Xiaoxiao, You Ran, Yang Xiufen, Zhao Lu, Chen Xi, Wang Yanling. Photoreceptor cell replacement therapy for retinal degeneration diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1116-1121. |
| [13] | Jiao Hui, Zhang Yining, Song Yuqing, Lin Yu, Wang Xiuli. Advances in research and application of breast cancer organoids [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1122-1128. |
| [14] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
| [15] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||