Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (27): 4083-4089.doi: 10.3969/j.issn.2095-4344.2016.27.019
Previous Articles Next Articles
Wang Qing-fu1, 2, Gan Chun-long3, Yi Xue-jie1
Revised:
2016-04-05
Online:
2016-06-30
Published:
2016-06-30
Contact:
Yi Xue-jie, M.D., Professor, Doctoral supervisor, School of Human Sports Science, Shenyang Sport University, Shenyang 110102, Liaoning Province, China
About author:
Wang Qing-fu, Master, Assistant researcher, School of Human Sports Science, Shenyang Sport University, Shenyang 110102, Liaoning Province, China; Qinhuangdao Training Base, General Administration of Sport of China, Qinhuangdao 066004, Hebei Province, China
Supported by:
the Excellent Talent Support Program of Colleges and Universities of Liaoning Province, No. WR2013015; the Key Subject Construction Project of Shenyang Sport University, No. XKFX1511
CLC Number:
Wang Qing-fu, Gan Chun-long, Yi Xue-jie. Effects of swimming on high-fat diet-induced obese and obese resistant rats[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(27): 4083-4089.
2.1 造模成功动物数量及过程 肥胖组、肥胖运动组、肥胖抵抗组和肥胖抵抗运动组大鼠均进入结果分析。实验流程见图1。 2.2 模型方法的改进及模型稳定性 通过8周高脂膳食喂养建立的肥胖大鼠模型更稳定,与人群中肥胖发生的异质性具有十分相似的特征,有利于肥胖症的研究。 2.3 主要观察结果和次要观察结果 2.3.1 总摄食量、体质量、脂肪量及脂体比 造模7周后,肥胖组大鼠体质量、总摄食量、脂肪量、脂体比显著高于肥胖抵抗组(P < 0.01);与肥胖组相比,肥胖运动组大鼠体质量、脂肪量、脂体比显著下降(P < 0.01);与肥胖抵抗组相比,肥胖抵抗运动组大鼠上述指标无显著变化(表1)。 2.3.2 血清瘦素浓度及瘦素/脂肪量 造模7周后,肥胖组大鼠瘦素/脂肪量比值显著低于肥胖抵抗组(P < 0.05);肥胖运动组大鼠血清瘦素浓度显著低于肥胖组 (P < 0.05);与肥胖抵抗组相比,肥胖抵抗运动组大鼠血清瘦素浓度和瘦素/脂肪量的差异无显著性意义(表2)。 2.3.3 下丘脑瘦素受体mRNA表达水平 与肥胖抵抗组比较,肥胖组大鼠下丘脑瘦素受体的基因表达水平显著下降(P < 0.05);与肥胖组相比,肥胖运动组大鼠下丘脑瘦素受体的基因表达水平显著升高(P < 0.05;图2,表3)。"
[1] 刘健敏,郑龙,张焕铃,等.肥胖易感及肥胖抵抗动物模型的建立与评价[J].科学技术与工程,2012,12(28):7344- 7346. [2] 蔡滢.食源性肥胖大鼠和肥胖抵抗大鼠下丘脑的蛋白组学研究[D].天津:天津医科大学,2011. [3] 张佳琪,王雪,林海青,等.不同健脾中药对饮食诱导肥胖大鼠肥胖程度及胰岛素抵抗的影响[J].中国中医药信息杂志, 2015,22(6): 64-68. [4] 刘桂,殷亮,王晓慧,等.高脂饮食诱导的肥胖与肥胖抵抗大鼠肝FAS和ACAT-2的蛋白表达差异[J].上海体育学院学报, 2014,38(6):105-109. [5] 刘春阳,黄徐根.肥胖抵抗现象及其机制研究[J].南京体育学院学报(自然科学版),2014,13(4):20-22. [6] 王欢,李宛真,汪弋力,等.高脂饮食诱导的肥胖及肥胖抵抗小鼠肠道菌群元基因组的比较研究[J].西安交通大学学报(医学版), 2014,35(2):240-244. [7] Wang X, Choi JW, Joo JI, et al. Differential expression of liver proteins between obesity-prone and obesity-resistant rats in response to a high-fat diet. Br J Nutr. 2011;106(4): 612-626. [8] Li J, Wang S, Zhang N, et al. Effects of changing dietary fat content on plasma gut hormone concentrations in diet-induced obese and diet-resistant rats. Br J Nutr. 2011;105(6):879-886. [9] Cottone P, Sabino V, Nagy TR, et al. Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats. Int J Obes (Lond). 2013;37(12):1515-1523. [10] Balasubramanian P, Jagannathan L, Mahaley RE, et al. High fat diet affects reproductive functions in female diet-induced obese and dietary resistant rats. J Neuroendocrinol. 2012; 24(5):748-755. [11] Thanos PK, Cho J, Kim R, et al. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats. Behav Brain Res. 2011;217(1):165-170. [12] Smith PM, Hindmarch CC, Murphy D, et al. AT1 receptor blockade alters nutritional and biometric development in obesity-resistant and obesity-prone rats submitted to a high fat diet. Front Psychol. 2014; 5:832. [13] Cifani C, Micioni Di Bonaventura MV, Pucci M, et al. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187. [14] Ma W, Yuan L, Yu H, et al. Mitochondrial dysfunction and oxidative damage in the brain of diet-induced obese rats but not in diet-resistant rats. Life Sci. 2014; 110(2):53-60. [15] Wang B, Sun J, Ma Y, et al. Increased oxidative stress and the apoptosis of regulatory T cells in obese mice but not resistant mice in response to a high-fat diet. Cell Immunol. 2014;288(1-2):39-46. [16] Stoffel W, Hammels I, Jenke B, et al. Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) deficiency. EMBO Rep. 2014; 15(1):110-120. [17] Tateishi K, Okada Y, Kallin EM, et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458(7239):757-761. [18] Friedlander NJ, Burhans MS, Ade L, et al. Global deletion of lipocalin 2 does not reverse high-fat diet-induced obesity resistance in stearoyl-CoA desaturase-1 skin-specific knockout mice. Biochem Biophys Res Commun. 2014;445(3):578-583. [19] Pierce WD, Diane A, Heth CD, et al. Evolution and obesity: resistance of obese-prone rats to a challenge of food restriction and wheel running. Int J Obes (Lond). 2010;34(3): 589-592. [20] Kus V, Prazak T, Brauner P, et al. Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. Am J Physiol Endocrinol Metab. 2008;295(2):E356-367. [21] Morita M, Oike Y, Nagashima T, et al. Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/- mice. EMBO J. 2011;30(22):4678-4691. [22] Marcelin G, Liu SM, Schwartz GJ, et al. Identification of a loss-of-function mutation in Ube2l6 associated with obesity resistance. Diabetes. 2013;62(8):2784-2795. [23] Tucker K, Overton JM, Fadool DA. Diet-induced obesity resistance of Kv1.3-/- mice is olfactory bulb dependent. J Neuroendocrinol. 2012;24(8):1087-1095. [24] Kotz C, Nixon J, Butterick T, et al. Brain orexin promotes obesity resistance. Ann N Y Acad Sci. 2012; 1264:72-86. [25] Lou MF, Shen W, Fu RS, et al. Maternal dietary protein supplement confers long-term sex-specific beneficial consequences of obesity resistance and glucose tolerance to the offspring in Brandt's voles. Comp Biochem Physiol A Mol Integr Physiol. 2015;182:38-44. [26] Butterick TA, Billington CJ, Kotz CM, et al. Orexin: pathways to obesity resistance? Rev Endocr Metab Disord. 2013;14(4):357-364. [27] Teske JA, Billington CJ, Kotz CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience. 2014; 256:91-100. [28] 徐凯旋,郁婷燕,管磊剑,等.下丘脑中瘦素/瘦素受体的促发育作用被干扰引起成年期肥胖:肥胖新机制[J].中华疾病控制杂志,2015,19(9):949-954. [29] 李红辉,唐宁,曾婷,等.瘦素受体基因多态性与壮族儿童单纯性肥胖的相关性研究[J].中国儿童保健杂志, 2013,21 (11):1148-1150. [30] 薛琨,郭红卫,万文涛,等.中国学龄儿童瘦素受体基因SNP rs1137101多态分布与肥胖相关性研究[J].营养学报, 2012, 34(6):536-539. [31] 姜萍,姜月华.运脾与化湿祛痰药物对饮食诱导肥胖大鼠肥胖程度及脂肪激素、瘦素抵抗的影响[J].中国中西医结合杂志,2014,34(8):997-1001. [32] 姜萍,宋钦兰.升清中药对饮食诱导肥胖大鼠瘦素抵抗的影响[J].中国中医药信息杂志,2014,21(8):60-62. [33] 田雷,陈钢.运动对高脂饮食大鼠下丘脑SOCS-3和BDNF以及瘦素抵抗的影响[J].广州体育学院学报,2013,33(6): 85-89. [34] 张琛琛,司虎克.营养和运动综合治疗对单纯性肥胖儿童血脂水平、瘦素抵抗以及炎症反应的影响[J].海南医学院学报,2014,20(12):1696-1698. [35] 甘春龙,王庆福,赵大林,等.有氧运动对高脂膳食肥胖和肥胖抵抗大鼠胰腺神经肽Y受体mRNA表达的影响[J].沈阳体育学院学报,2012,31(5):68-72. [36] Levin BE. Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol. 1999;276(2 Pt 2):R382-387. [37] 杜晓平,衣雪洁,曹师承.长期有氧训练对高脂膳食肥胖和肥胖抵抗大鼠骨骼肌胰岛素受体mRNA表达的影响[J].沈阳体育学院学报,2010,29(5):53-56. [38] 刘倩倩,肖国强.游泳运动对肥胖及肥胖抵抗型NAFLD大鼠干预效果的对比研究[J].体育学刊,2013,20(1):129-134. [39] Watson PM, Commins SP, Beiler RJ, et al. Differential regulation of leptin expression and function in A/J vs. C57BL/6J mice during diet-induced obesity. Am J Physiol Endocrinol Metab. 2000;279(2):E356-365. [40] 甄静,张蕴琨.运动与瘦素的研究进展[J].南京体育学院学报(自然科学版),2014,13(2):46-51. [41] 王红霞,王茹,娄淑杰.调节性T细胞与瘦素在运动抗炎机制中的作用研究进展[J].中国运动医学杂志, 2013,32(9): 840-843. [42] Kohara K, Uemura K, Takata Y, et al. Postprandial hypotension: evaluation by ambulatory blood pressure monitoring. Am J Hypertens. 1998;11(11 Pt 1):1358- 1363. [43] 汪毅,周琨,李松波,等.限制饮食对大鼠血清瘦素和可溶性瘦素受体影响[J].北京体育大学学报,2012,35(2):46-49. [44] 李玉莲,战新梅,王德华.瘦素与运动的关系及其在运动训练监测中的应用[J].中国运动医学杂志,2006,25(3): 327-331. [45] 刘文学.有氧运动对老年肥胖女性血清瘦素、脂联素水平的影响[J].中国老年学杂志,2014,(12):3431-3432. [46] 刘琳.不同音乐节奏的健美操对超重女大学生血清瘦素、瘦素蛋白表达的影响[J].沈阳体育学院学报,2014,33(4): 77-80. [47] Lepercq J, Cauzac M, Lahlou N, et al. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47(5):847-850. [48] 孔兆伟,傅浩坚,周碧珠,等.8周及12周游泳训练对大鼠血清瘦素水平的影响[J].中国运动医学杂志,2003,22(5): 511-514. [49] 胡振东,王德华.自愿转轮运动条件下雌性长爪沙鼠的体重、能量代谢和血清瘦素含量的变化[J].中国运动医学杂志,2007,26(5):605-608. [50] Hickey MS, Houmard JA, Considine RV, et al. Gender-dependent effects of exercise training on serum leptin levels in humans. Am J Physiol. 1997; 272(4 Pt 1):E562-566. [51] Zaccaria M, Ermolao A, Brugin E, et al. Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. J Endocrinol Invest. 2013; 36(6):396-401. [52] ] Plinta R, Olszanecka-Glinianowicz M, Drosdzol-Cop A, et al. The effect of three-month pre-season preparatory period and short-term exercise on plasma leptin, adiponectin, visfatin, and ghrelin levels in young female handball and basketball players. J Endocrinol Invest. 2012;35(6):595-601. [53] Kastin AJ, Pan W. Dynamic regulation of leptin entry into brain by the blood-brain barrier. Regul Pept. 2000; 92(1-3):37-43. [54] Kang S, Kim KB, Shin KO. Exercise training improves leptin sensitivity in peripheral tissue of obese rats. Biochem Biophys Res Commun. 2013;435(3):454-459. [55] 李琳燕,衣雪洁.运动对饮食性肥胖大鼠脂肪细胞瘦素受体基因表达的影响[J].山东体育学院学报,2008,24(4):64-67. [56] 宫华,高海宁,常波.运动和药物干预对2型糖尿病大鼠骨髓瘦素及其受体蛋白表达的影响[J].沈阳体育学院学报, 2014,33(4):67-71. [57] Kimura M, Tateishi N, Shiota T, et al. Long-term exercise down-regulates leptin receptor mRNA in the arcuate nucleus. Neuroreport. 2004;15(4):713-716. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Ziyang, Pu Rui, Deng Shuang, Yuan Lingyan. Regulatory effect of exosomes on exercise-mediated insulin resistance diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 4089-4094. |
[12] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
[13] | Bi Qingwei, Liu Chengpu, Li Yan, Zhao Wenwen, Han Mei. Structure analysis of platelet-rich fibrin derived from two centrifugation procedures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3534-3539. |
[14] | Tian Guangzhao, Yang Zhen, Zha Kangkang, Sun Zhiqiang, Li Xu, Sui Xiang, Huang Jingxiang, Guo Quanyi, Liu Shuyun. Regulatory effect of decellularized cartilage matrix on macrophage polarization [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3545-3550. |
[15] | Zhou Anqi, Tang Yufei, Wu Bingfeng, Xiang Lin. Designing of periosteum tissue engineering: combination of generality and individuality [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3551-3557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||