中国组织工程研究 ›› 2014, Vol. 18 ›› Issue (34): 5540-5547.doi: 10.3969/j.issn.2095-4344.2014.34.023
• 生物材料综述 biomaterial review • 上一篇 下一篇
赵 文1,2,刘玉英3,刘子豪4,王 美4
修回日期:
2014-07-02
出版日期:
2014-08-20
发布日期:
2014-08-20
通讯作者:
赵文,解放军总医院(301医院)骨外科,北京市 100853;北京航天总医院骨外科,北京市 100076
作者简介:
赵文,男,1968年生,四川省绵阳市人,汉族,华中科技大学同济医学院毕业,硕士,教授,主任医师,主要从事骨与关节损伤研究。
基金资助:
航天总院科技基金资助项目:高分子聚合水凝胶在骨组织工程中的应用
Zhao Wen1,2, Liu Yu-ying3, Liu Zi-hao4, Wang Mei4
Revised:
2014-07-02
Online:
2014-08-20
Published:
2014-08-20
Contact:
Zhao Wen, Department of Orthopedic Surgery, the General Hospital of Chinese PLA (301 Hospital), Beijing 100853, China; Department of Orthopedic Surgery, Beijing Aerospace General Hospital, Beijing 100076, China
About author:
Zhao Wen, Master, Professor, Chief physician, Department of Orthopedic Surgery, the General Hospital of Chinese PLA (301 Hospital), Beijing 100853, China; Department of Orthopedic Surgery, Beijing Aerospace General Hospital, Beijing 100076, China
Supported by:
the Science and Technology Fund of Beijing Aerospace General Hospital
摘要:
背景:高分子水凝胶与关节软骨的细胞外基质组成相似,可促进软骨细胞增殖、分化,形成软骨板,促进关节软骨的再生和修复。
结果与结论:天然高分子水凝胶材料包括蛋白质类(胶原蛋白、明胶)及多糖类(壳聚糖、透明质酸)等。改性后天然高分子水凝胶不但具备关节软骨再生的理化特性,而且具有良好的生物特性,即组织相容性、低免疫原性、低细胞毒性、自身可降解性,同时可促进细胞黏附、增殖与分化,具备推动新组织再生的能力,甚至能够作为药物、生长因子等的缓释载体,在关节软骨再生及修复领域有着可观的应用前景。
中图分类号:
赵 文,刘玉英,刘子豪,王 美. 高分子水凝胶修复关节软骨损伤:安全与有效性评价[J]. 中国组织工程研究, 2014, 18(34): 5540-5547.
Zhao Wen, Liu Yu-ying, Liu Zi-hao, Wang Mei. Degradable natural polymer hydrogels in articular cartilage repair: safety and effectiveness assessment [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(34): 5540-5547.
[1] Ye K,Di Bella C,Myers DE,et al.The osteochondral dilemma: review of current management and future trends.ANZ J Surg. 2014;84:211-217.
[2] Zeng L,Yao Y,Wang D,et al.Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;34:168-175.
[3] Dahlin RL,Kinard LA,et al.Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials.2014;35:7460-7469.
[4] Hu X,Ma L,Wang C,et al.Gelatin Hydrogel Prepared by Photo-initiated Polymerization and Loaded with TGF-β1 for Cartilage Tissue Engineering. Macromol Biosci. 2009;9(12): 1194-1201.
[5] Zhu S,Zhang B,Man C,et al.Combined Effects of Connective Tissue Growth Factor-Modified Bone Marrow-Derived Mesenchymal Stem Cells and NaOH-Treated PLGA Scaffolds on the Repair of Articular Cartilage Defect in Rabbits.Cell Transplant.2014;23:715-727.
[6] Fan W,Wu C,Miao X,et al.Biomaterial scaffolds in cartilage–subchondral bone defects influencing the repair of autologous articular cartilage transplants. J Biomater Appl. 2013;27:979-989.
[7] Zhao Q,Wang S,Tian J,et al.Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair. J Mater Sci Mater Med.2013;24:793-801.
[8] Griffith LG.Emerging Design Principles in Biomaterials and Scaffolds for Tissue Engineering.Ann N Y Acad Sci. 2002;961: 83-95.
[9] Balakrishnan B,Banerjee R.Biopolymer-Based Hydrogels for Cartilage Tissue Engineering.Chem Rev.2011;111:4453-4474.
[10] Shapira A,Kim DH,Dvir T.Advanced micro- and nanofabrication technologies for tissue engineering. Biofabrication.2014;6:020301.
[11] Mano JF,Silva GA,Azevedo HS,et al.Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends.J R Soc Interface.2007;4:999-1030.
[12] Chung J,Song M,Ha CW,et al.Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model.Stem Cell Res Ther.2014;5(2):39.
[13] Wang LS,Du C,Toh WS,et al.Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties.Biomaterials. 2014;35:2207-2217.
[14] Seol D,Magnetta MJ,Ramakrishnan PS,et al.Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair.J Biomed Mater Res B Appl Biomater. 2013; 101(8):1508-1515.
[15] Fukui N,Sato T,Kuboki Y,et al.Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation.Bio-Medical Materials and Engineering. 2008;18: 25-33.
[16] Zhang L,Yuan T,Guo L,et al.An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells.J Biomed Mater Res A. 2012;100 (10): 2717-2725.
[17] Freyria AM,Ronzière MC,Cortial D,et al.Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A. 2009; 15: 1233-1245.
[18] Rutherford RB,Gu K,Racenis P,et al.Early events: the in vitro conversion of BMP transduced fibroblasts to chondroblasts. Connect Tissue Res.2003;44:117-123.
[19] Yamaoka H,Asato H,Ogasawara T,et al.Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials.J Biomed Mater Res A. 2006; 78(1):1-11.
[20] Mimura T,Imai S,Okumura N,et al.Spatiotemporal control of proliferation and differentiation of bone marrow–derived mesenchymal stem cells recruited using collagen hydrogel for repair of articular cartilage defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2011;98B: 360-368.
[21] Reichert JC,Heymer A,Berner A,et al.Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration.Biomed Mater. 2009;4:065001.
[22] Weinand C,Pomerantseva I,Neville CM,et al. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.Bone.2006;38:555-563.
[23] Chen G,Sato T,Ushida T,et al.Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 2004;10:323-330.
[24] Haaparanta AM,Järvinen E,Cengiz I,et al.Preparation and characterization of collagen/PLA,chitosan/PLA,and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med.2014;25:1129-1136.
[25] He X,Fu W,Feng B,et al.Electrospun collagen–poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering. Regen Med.2013;8:425-436.
[26] Dinescu S,G?l??eanu B,Albu M,et al.Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration. Biomed Res Int.2013;2013:598056.
[27] Zhang Q,Lu H,Kawazoe N,et al.Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia. 2014; 10:2005-2013.
[28] Su Y,Mo X Genipin crosslinked gelatin nanofibers for tissue engineering. J Controlled Release.2011;152 Supplement 1: e230-e232.
[29] Shu XZ,Ahmad S,Liu Y,et al.Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A. 2006;79A: 902-912.
[30] Shin H,Olsen BD,Khademhosseini A.The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials.2012;33:3143-3152.
[31] Lien SM,Ko LY,Huang TJ.Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering.Acta Biomaterialia. 2009;5: 670-679.
[32] Xing Q,Zhao F,Chen S,et al.Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomaterialia. 2010;6: 2132-2139.
[33] Chang CH,Lin FH,Lin CC,et al.Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor.J Biomed Mater Res B Appl Biomater.2004;71(2):313-321.
[34] Gonzalez JS,Alvarez VA.Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage.J Mech Behav Biomed Mater.2014;34:47-56.
[35] Pan Y,Xiong D,Gao F.Viscoelastic behavior of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel biocomposites as an articular cartilage.J Mater Sci Mater Med.2008;19:1963-1969.
[36] St-Pierre JP,Pilliar RM,Grynpas MD,et al.Calcification of cartilage formed in vitro on calcium polyphosphate bone substitutes is regulated by inorganic polyphosphate.Acta Biomaterialia.2010;6:3302-3309.
[37] Boere KWM,Visser J,Seyednejad H,et al.Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia.2014;10:2602-2611.
[38] Tsuzuki N,Seo JP,Yamada K,et al.The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect. Can Vet J.2013;54:573-580.
[39] Park H,Temenoff JS,Tabata Y,et al.Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A. 2009;88A: 889-897.
[40] Guo X,Park H,Young S,et al.Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia.2010;6:39-47.
[41] Guo X,Liao J,Park H,et al.Effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite.Acta Biomaterialia. 2010;6: 2920-2931.
[42] Khan F,Ahmad SR.Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application.Macromol Biosci. 2013; 13:395-421.
[43] Oliveira JT,Reis RL.Polysaccharide-based materials for cartilage tissue engineering applications.J Tissue Eng Regen Med.2011;5:421-436.
[44] Hu J, Hou Y, Park H, et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomaterialia. 2012;8: 1730-1738.
[45] Zawko SA, Suri S, Truong Q, et al. Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels. Acta Biomaterialia. 2009;5:14-22.
[46] Jeon O,Bouhadir KH,Mansour JM,et al.Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties.Biomaterials. 2009;30:2724-2734.
[47] Kumar MNVR,Muzzarelli RAA,Muzzarelli C,et al.Chitosan Chemistry and Pharmaceutical Perspectives.Chem Rev. 2004; 104:6017-6084.
[48] Freier T,Koh HS,Kazazian K,et al.Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872-5878.
[49] Rinaudo M,Pavlov G,Desbri`eres J.Influence of acetic acid concentration on the solubilization of chitosan.Polymer. 1999; 40(25):7029-7032.
[50] Jin R,Moreira Teixeira LS,Dijkstra PJ,et al.Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials.2009;30:2544-2551.
[51] Bernkop-Schnürch A,Hornof M,Guggi D.Thiolated chitosans.Eur J Pharm Biopharm.2004;57:9-17.
[52] Di Martino A,Sittinger M,Risbud MV.Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983-5990.
[53] Gupta A,Bhat S,Jagdale PR,et al.Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model.Tissue Eng Part A.2014[Epub ahead of print]
[54] Qi B,Yu A,Zhu S,et al.Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med. 2013;238:23-30.
[55] Sechriest VF,Miao YJ,Niyibizi C,et al.GAG-augmented polysaccharide hydrogel: A novel biocompatible and biodegradable material to support chondrogenesis.J Biomed Mater Res.2000;49:534-541.
[56] Richardson SM,Hughes N,Hunt JA,et al.Human mesenchymal stem cell differentiation to NP-like cells in chitosan–glycerophosphate hydrogels. Biomaterials. 2008;29: 85-93.
[57] Naderi-Meshkin H,Andreas K,Matin MM,et al.Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int.2014;38(1):72-84.
[58] Berger J,Reist M,Mayer JM,et al.Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1): 19-34.
[59] Casettari L,Vllasaliu D,Lam JKW,et al.Biomedical applications of amino acid-modified chitosans: A review. Biomaterials. 2012; 33:7565-7683.
[60] Alhadlaq A, Mao JJ. Tissue-Engineered Osteochondral Constructs in the Shape of an Articular Condyle. J Bone Joint Surg Am. 2005;87(5):936-944.
[61] Zhao P,Deng C,Xu H,et al.Fabrication of Photo-crosslinked Chitosan- Gelatin Scaffold in Sodium Alginate Hydrogel for Chondrocyte Culture.Bimed Med Mater Eng. 2014;24:633-641.
[62] Coviello T,Matricardi P,Marianecci C,et al.Polysaccharide hydrogels for modified release formulations.J Controlled Release.2007;119:5-24.
[63] Marsich E Borgogna M,Donati I,et al. Alginate/lactose- modified chitosan hydrogels: A bioactive biomaterial for chondrocyte encapsulation.J Biomed Mater Res A. 2008; 84A:364-376.
[64] Ti?li RS,Gümü?derelio?lu M.Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity.Int J Biol Macromol.2008;43:121-128.
[65] Masters KS.Covalent Growth Factor Immobilization Strategies for Tissue Repair and Regeneration. Macromol Biosci.2011;11:1149-1163.
[66] Campo GM,Avenoso A,Nastasi G,et al.Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim Biophys Acta. 2011; 1812(9):1170-1181.
[67] Solchaga LA, Yoo JU, Lundberg M, et al. Hyaluronan-based polymers in the treatment of osteochondral defects. Journal of Orthopaedic Research.2000;18:773-780.
[68] Shu XZ,Liu Y,Luo Y,et al.Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules.2002;3:1304-1311.
[69] Barbucci R,Fini M,Giavaresi G,et al.Hyaluronic acid hydrogel added with ibuprofen-lysine for the local treatment of chondral lesions in the knee: In vitro and in vivo investigations.J Biomed Mate Res B Appl Biomater.2005;75B:42-48.
[70] Chung C,Mesa J,Miller GJ,et al.Effects of auricular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks.Tissue Eng. 2006;12:2665-2673.
[71] Chung C,Mesa J,Randolph MA,et al.Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks.J Biomed Mater Res A.2006;77A:518-525.
[72] Nettles DL,Vail TP,Morgan MT,et al.Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair.Ann Biomed Eng.2004;32:391-397.
[73] Leach JB,Bivens KA,Collins CN,et al.Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering. J Biomed Mater Res A.2004;70A:74-82.
[74] Leach JB,Schmidt CE.Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials. 2005;26: 125-135.
[75] Burdick JA,Chung C,Jia X,et al.Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks.Biomacromolecules. 2004;6:386-391.
[76] Huin-Amargier C,Marchal P,Payan E,et al.New physically and chemically crosslinked hyaluronate (HA)-based hydrogels for cartilage repair.J Biomed Mater Res A.2006;76A:416-424.
[77] Mao JS,Zhao LG,Yin YJ,et al.Structure and properties of bilayer chitosan-g elatin scaffolds. Biomaterials. 2003;24: 1067-1074.
[78] Kathuria N,Tripathi A,Kar KK,et al.Synthesis and characterization of elastic and macroporous chitosan gelatin cryogels for tissue engineering. Acta Biomaterialia. 2009;5: 406-418.
[79] Tan H,Wu J,Lao L,et al.Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.Acta Biomaterialia. 2009;5:328-337.
[80] Bhardwaj N,Kundu SC.Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications.Carbohydrate Polym. 2011;85: 325-333.
[81] Bhardwaj N,Kundu SC.Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials.2012;33(10):2848-2857.
[82] Zhao Y,Zhang Z,Wang J,et al.Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells.Artif Organs. 2012; 36(3):247-255.
[83] Garcia-Fuentes M,Meinel AJ,Hilbe M,et al.Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.Biomaterials. 2009;30: 5068-5076.
[84] Lu HH,Subramony SD,Boushell MK,et al.Tissue engineering strategies for the regeneration of orthopedic interfaces.Ann Biomed Eng.2010;38:2142-2154.
[85] Chen J,Chen H,Li P,et al.Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 2011;32: 4793-4805. |
[1] | 张同同, 王中华, 文 杰, 宋玉鑫, 刘 林. 3D打印模型在颈椎肿瘤手术切除与重建中的应用[J]. 中国组织工程研究, 2021, 25(9): 1335-1339. |
[2] | 曾燕华, 郝延磊. 许旺细胞体外培养及纯化的系统性综述[J]. 中国组织工程研究, 2021, 25(7): 1135-1141. |
[3] | 邓桢翰, 黄 勇, 肖璐璐, 陈昱霖, 朱伟民, 陆 伟, 王大平. 骨形态发生蛋白在关节软骨再生过程中的作用与应用[J]. 中国组织工程研究, 2021, 25(5): 798-806. |
[4] | 徐东紫, 张 婷, 欧阳昭连. 心脏组织工程领域全球专利竞争态势分析[J]. 中国组织工程研究, 2021, 25(5): 807-812. |
[5] | 吴子健, 胡昭端, 谢有琼, 王 峰, 李 佳, 李柏村, 蔡国伟, 彭 锐. 3D打印技术与骨组织工程研究文献计量及研究热点可视化分析[J]. 中国组织工程研究, 2021, 25(4): 564-569. |
[6] | 李 黎, 马 力. 磁性壳聚糖微球固定化乳糖酶及其酶学性质[J]. 中国组织工程研究, 2021, 25(4): 576-581. |
[7] | 常文辽, 赵 杰, 孙晓亮, 王 锟, 吴国锋, 周 剑, 李树祥, 孙 晗. 人工骨膜的材料选择、理论设计及生物仿生功能[J]. 中国组织工程研究, 2021, 25(4): 600-606. |
[8] | 刘 旒, 周箐竹, 龚 桌, 刘博言, 杨 斌, 赵 娴. 胶原/无机材料构建组织工程骨的特点及制造技术[J]. 中国组织工程研究, 2021, 25(4): 607-613. |
[9] | 刘 飞, 崔宇韬, 刘 贺. 局部抗生素递送系统治疗骨髓炎的优势与问题[J]. 中国组织工程研究, 2021, 25(4): 614-620. |
[10] | 李晓壮, 段 浩, 王伟舟, 唐志宏, 王旸昊, 何 飞. 骨组织工程材料治疗骨缺损疾病在体内实验中的应用[J]. 中国组织工程研究, 2021, 25(4): 626-631. |
[11] | 张振坤, 李 喆, 李 亚, 王莹莹, 王亚苹, 周馨魁, 马珊珊, 关方霞. 海藻酸盐基水凝胶/敷料在创面愈合中的应用:持续、动态与顺序释放[J]. 中国组织工程研究, 2021, 25(4): 638-643. |
[12] | 陈佳娜, 邱燕玲, 聂敏海, 刘旭倩. 组织工程支架材料修复口腔颌面部软组织缺损[J]. 中国组织工程研究, 2021, 25(4): 644-650. |
[13] | 邢 浩, 张永红, 王 栋. 长骨大段骨缺损修复方法的优势与不足[J]. 中国组织工程研究, 2021, 25(3): 426-430. |
[14] | 王 皓, 陈明学, 李俊康, 罗旭江, 彭礼庆, 李 获, 黄 波, 田广招, 刘舒云, 眭 翔, 黄靖香, 郭全义, 鲁晓波. 脱细胞猪皮基质构建组织工程半月板支架[J]. 中国组织工程研究, 2021, 25(22): 3473-3478. |
[15] | 莫剑玲, 何少茹, 冯博文, 简敏桥, 张晓晖, 刘财盛, 梁一晶, 刘玉梅, 陈 亮, 周海榆, 刘艳辉. 构建预血管化细胞膜片及血管形成相关因子的表达[J]. 中国组织工程研究, 2021, 25(22): 3479-3486. |
1.1 资料来源 由第一、二作者检索1994年1月至2013年7月PubMed数据库、Springer数据库、Sciencedirect数据库、Ovid数据库及CNKI数据库,检索词为“natural polymers,hydrogel,articular cartilage,tissue engineering;关节软骨,水凝胶,天然聚合物,组织工程”。检索文献类型包括研究原著、综述、述评、经验交流及荟萃分析等。
天然高分子水凝胶材料能模拟软骨基质的高度水合胶原蛋白结构,具有生物相容性、低炎症刺激、低免疫原性的特点,将这些高分子材料适当改性可以极大提高其物理化学、生物和机械性能。生物分子的化学改质提高了蛋白质或细胞的黏附功能,促进细胞扩散和增长,以及细胞外基质的生物合成,因此有利于软骨组织的再生。 光交联基团能使植入细胞和生物活性物质的水凝胶材料与原位组织相融合。光交联水凝胶的生物活性和机械性能,可以通过适当控制交联试剂的交联密度和结构来得到提高。将两个或多个天然生物高分子聚合物络合于水凝胶之中,可使不同高分子的优势有效结合,从而形成复合结构体。事实上,自然界已将这些天然大分子整合入复杂的结构中,生成具有高强度及卓越功能的组织,因此除了目前制备出的多孔交联结构外,通过类似方式模拟天然生物高聚物的结构亦具有极大价值。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||