中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (16): 4253-4264.doi: 10.12307/2026.731

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

类风湿关节炎与克罗恩病共同基因及免疫机制关联:生物信息学分析

卢立炜1,黄柯琪1,陈跃平2,卓映宏2,朱乃辉1,魏 澎1   

  1. 1广西中医药大学,广西壮族自治区南宁市  530001;2广西中医药大学附属瑞康医院,广西壮族自治区南宁市  530011

  • 收稿日期:2025-07-04 接受日期:2025-08-27 出版日期:2026-06-08 发布日期:2025-11-29
  • 通讯作者: 陈跃平,博士,主任医师,博士生导师,广西中医药大学附属瑞康医院,广西壮族自治区南宁市 530011
  • 作者简介:卢立炜,男,2000年生,福建省漳州市人,汉族,广西中医药大学在读硕士,主要从事骨关节、脊柱创伤研究。
  • 基金资助:
    国家自然科学基金项目(81960803),项目负责人:陈跃平;广西壮族自治区自然科学基金项目(2023JJA140318),项目负责人:陈跃平;广西中医药大学“桂派中医药传承创新团队”项目(2022A004),项目负责人:陈跃平

Bioinformatics-based analysis of shared genes and associations in immune mechanisms between rheumatoid arthritis and Crohn’s disease

Lu Liwei1, Huang Keqi1, Chen Yueping2, Zhuo Yinghong2, Zhu Naihui1, Wei Peng1   

  1. 1Graduate School of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, China; 2Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • Received:2025-07-04 Accepted:2025-08-27 Online:2026-06-08 Published:2025-11-29
  • Contact: Chen Yueping, PhD, Chief physician, Doctoral supervisor, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • About author:Lu Liwei, MS candidate, Graduate School of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, No. 81960803 (to CYP); Natural Science Foundation of Guangxi Zhuang Autonomous Region, No. 2023JJA140318 (to CYP); “Gui’s Traditional Chinese Medicine Inheritance and Innovation Team” of Guangxi University of Chinese Medicine, No. 2022A004 (to CYP)

摘要:


文题释义:
类风湿关节炎:是一种以滑膜关节慢性炎症为特征的自身免疫性疾病,核心病理表现为滑膜增生、炎性细胞浸润及关节软骨破坏。
克罗恩病:属于炎症性肠病,以透壁性肠道炎症和肉芽肿形成为病理标志。克罗恩病的特征性免疫异常包括辅助性T细胞1/辅助性T细胞17过度活化及肠道屏障损伤。

背景:类风湿关节炎与克罗恩病是常见的自身免疫性疾病,临床研究发现这两种疾病可伴发,可能存在相关性,但目前尚无研究证明两者之间存在共同发病基因和免疫机制。
目的:通过生物信息学及两种机器学习鉴定类风湿关节炎与克罗恩病共同基因和免疫机制之间的关联。
方法:从GEO数据库(由美国国立医学图书馆开发的开放数据库)中检索获得类风湿关节炎与克罗恩病对应的训练数据集和验证集(研究已获得相关机构审查委员会批准),并进行统一整理,使用“limma”包分析类风湿关节炎、克罗恩病的差异表达基因。分别在类风湿关节炎与克罗恩病的训练集上应用加权基因共表达网络分析识别疾病相关模块,取交集初步筛选基因集,同时进行GO、KEGG分析。通过蛋白质互作网络及MCODE算法识别出20个基因集,分别在类风湿关节炎与克罗恩病的训练集上应用LASSO回归和随机森林两种机器学习算法独立筛选各自疾病的关键特征基因。取类风湿关节炎与克罗恩病筛选结果交集,获得共有的潜在关键基因,通过验证集验证准确度确定核心基因。对核心基因与浸润免疫细胞进行CIBERSORT免疫浸润等功能分析,确定核心基因与类风湿关节炎、克罗恩病的相关性。
结果与结论:类风湿关节炎有2 516个差异基因,克罗恩病有281个差异基因。通WGCNA、蛋白互作网络和2种机器学习算法取交集后得到3个核心基因,半胱天冬酶1(CASP1)、三联基序21(TRIM21)及蛋白酶体亚基10(PSMB10)。富集分析显示两种疾病与抗原的加工和呈递、内质网膜腔面和多种免疫球蛋白结合相关;3个核心基因在两种疾病验证集的表达趋势与训练集一致。免疫细胞浸润分析显示,巨噬细胞(M0、M1)和中性粒细胞在类风湿关节炎与克罗恩病中的表达均显著增高,说明中性粒细胞可能在类风湿关节炎和克罗恩病发病机制中起重要作用。该研究不仅增进了对两种重要自身免疫病共性的认知,更重要的是为中国研究人员在新靶点的发现与验证、新型诊疗技术的开发以及转化医学研究模式应用等方面提供了宝贵的借鉴意义和具体的指导路径。 
https://orcid.org/0009-0006-4256-6610(卢立炜);https://orcid.org/0000-0003-3860-1568(陈跃平)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 类风湿关节炎, 克罗恩病, 免疫浸润, 生物信息学, 机器学习, 自身免疫性疾病

Abstract: BACKGROUND: Rheumatoid arthritis and Crohn’s disease are common autoimmune diseases. Clinical studies have found that these two diseases can coexist and may be related, but there is currently no research to prove that there are common pathogenic genes and immune mechanisms between them.
OBJECTIVE: To identify the shared genes and immune mechanisms between rheumatoid arthritis and Crohn’s disease through bioinformatics and two machine learning methods.
METHODS: Training and validation datasets for rheumatoid arthritis and Crohn’s disease were retrieved from the GEO database (an open database developed by the United States National Library of Medicine) and uniformly organized. The “limma” package was used to perform differentially expressed genes of rheumatoid arthritis and Crohn’s disease. Weighted gene co-expression network analysis was applied to the training sets of rheumatoid arthritis and Crohn’s disease to identify disease-related modules, and the intersection was taken to preliminarily screen gene sets, while GO and KEGG analyses were conducted. Twenty gene sets were identified through the protein-protein interaction network and MCODE algorithm. Two machine learning algorithms, LASSO regression and random forest, were independently applied to the training sets of rheumatoid arthritis and Crohn’s disease to screen key characteristic genes for each disease. Subsequently, the intersection of the screening results of rheumatoid arthritis and Crohn’s disease was taken to obtain shared potential key genes, and the accuracy was verified through the validation set to determine the core genes. Finally, CIBERSORT immune infiltration and other functional analyses were performed to confirm the correlation between core genes and rheumatoid arthritis as well as Crohn’s disease.
RESULTS AND CONCLUSION: A total of 2 516 differentially expressed genes were obtained for rheumatoid arthritis, and 281 differentially expressed genes for Crohn’s disease. Following intersection analysis using WGCNA, protein-protein interaction network, and two machine learning algorithms, three core genes were identified: CASP1, TRIM21, and PSMB10. Enrichment analysis showed that the two diseases were associated with antigen processing and presentation, luminal side of endoplasmic reticulum membrane, and binding to multiple immunoglobulins. The expression trends of three core genes in the validation sets of the two diseases were consistent with those in the training set. Immune cell infiltration analysis revealed significantly increased expression of M0 macrophages, M1 macrophages, and neutrophils in both rheumatoid arthritis and Crohn’s disease. This indicates that neutrophils may play an important role in the pathogenesis of rheumatoid arthritis and Crohn’s disease. This study not only enhances our understanding of the commonalities between two important autoimmune diseases, but more importantly, it provides valuable insights and specific guidance for Chinese researchers in the discovery and validation of new targets, the development of novel diagnostic and therapeutic technologies, and the application of translational medicine research models.


Key words: rheumatoid arthritis, Crohn’s disease, immune infiltration, bioinformatics, machine learning, autoimmune disease

中图分类号: