中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (12): 3145-3155.doi: 10.12307/2026.323

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

类风湿性关节炎中细胞因子及受体互作通路的特征基因和分子亚型与实验验证

吴  军1,张玉珠2,董晓洁1,王凯迪1,孙  彬3   

  1. 临沂市人民医院,1医学美容整形中心,2重症医学科,3创伤中心二病区,山东省临沂市   276000

  • 收稿日期:2025-05-21 接受日期:2025-06-26 出版日期:2026-04-28 发布日期:2025-09-30
  • 通讯作者: 孙彬,硕士,副主任医师,主任,临沂市人民医院创伤中心二病区,山东省临沂市 276000
  • 作者简介:吴军,男,1991年生,安徽省安庆市人,苏州大学在读博士,主治医师。

Experimental validation of cytokine-cytokine receptor interaction pathway related gene signatures and molecular subtypes in rheumatoid arthritis

Wu Jun1, Zhang Yuzhu2, Dong Xiaojie1, Wang Kaidi1, Sun Bin3   

  1. 1Medical Cosmetic and Plastic Surgery Center, 2Department of Intensive Care Medicine, 3Second Ward of the Trauma Center, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
  • Received:2025-05-21 Accepted:2025-06-26 Online:2026-04-28 Published:2025-09-30
  • Contact: Sun Bin, MS, Associate chief physician, Second Ward of the Trauma Center, Linyi People's Hospital, Linyi 276000, Shandong Province, China
  • About author:Wu Jun, PhD candidate, Attending physician, Medical Cosmetic and Plastic Surgery Center, Linyi People's Hospital, Linyi 276000, Shandong Province, China

摘要:


文题释义:
细胞因子-细胞因子受体相互作用通路:细胞因子是由免疫细胞及组织细胞分泌的在细胞间发挥相互调控作用的一类小分子可溶性蛋白质,细胞因子-细胞因子相互作用通路是指不同细胞因子之间通过直接或间接的方式相互影响、相互调节,形成一个复杂的网络状信号传导途径。在这个通路中,一种细胞因子可以诱导或抑制其他细胞因子的产生、释放和活性,它们之间通过受体介导的信号转导等机制,共同协调机体的免疫应答、炎症反应、细胞增殖分化等多种生理过程。
特征基因:是指在特定生物过程、细胞类型或疾病状态等条件下,具有显著差异表达或独特功能特性,能够作为特征性标志的基因。它们可将特定的生物状态或细胞类型与其他状态或类型区分开来。

背景:类风湿性关节炎是一种自身免疫性疾病,受发病机制和患者个体体质差异影响,患者治疗效果存在显著不同,部分患者因对治疗药物不敏感,发展为难治性类风湿性关节炎。因此寻找类风湿性关节炎的特征基因、挖掘新的治疗靶点,已成为该领域亟待解决的关键问题。
目的:运用生物信息学分析方法,探究细胞因子-细胞因子受体相互作用通路相关基因在类风湿性关节炎诊断、分型及功能解析中的作用。
方法:从基因表达综合数据库(GEO,https://www.ncbi.nlm.nih.gov/geo/,由美国国立生物技术信息中心创建并维护的基因表达数据库)下载4个包含类风湿性关节炎样本的数据集,各数据集均为公开发表的数据,符合伦理学要求。将 GSE55235、GSE55457和GSE77298数据集合并作为训练集,GSE12021数据集作为验证集。研究流程:①分析细胞因子-细胞因子受体相互作用通路在类风湿性关节炎中的失调状态,筛选该通路相关的差异表达基因;②综合采用随机森林算法、最小绝对收缩和选择算子、支持向量机-递归特征消除法、Boruta全特征选择算法及加权基因共表达网络分析,进一步筛选类风湿性关节炎中与细胞因子-细胞因子受体相互作用通路相关的特征基因;③基于筛选出的差异基因,运用无监督聚类分析方法,将类风湿性关节炎划分为不同的分子亚型,并对比分析各亚型间信号通路活性及免疫细胞浸润水平的差异;④通过构建类风湿性关节炎细胞模型,对特征基因的表达水平进行实验验证。
结果与结论:①经多方法整合分析,成功筛选出3个特征基因;②基于细胞因子-细胞因子受体相互作用通路可将类风湿性关节炎分为2种亚型:甲氨蝶呤敏感型和不敏感型,根据此分型可以指导类风湿性关节炎的临床治疗,避免盲目使用甲氨蝶呤,及时调整治疗策略,选择更有效的药物或治疗组合,从而提高治疗效果,改善患者的病情,提升类风湿性关节炎治疗的有效性和精准性。
https://orcid.org/0009-0000-8692-3524 (吴军) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 类风湿性关节炎, 细胞因子-细胞因子受体相互作用通路, 机器学习, 无监督聚类分析

Abstract: BACKGROUND: Rheumatoid arthritis is an autoimmune disease. Due to disease pathogenesis and individual differences in patients' constitutions, there are significant variations in the treatment outcomes. Some patients develop refractory rheumatoid arthritis due to their insensitivity to therapeutic drugs. Therefore, identifying characteristic genes of rheumatoid arthritis and exploring new therapeutic targets have become crucial issues that urgently need to be addressed in this field.
OBJECTIVE: To explore the roles of genes related to the cytokine-cytokine receptor interaction pathway in the diagnosis, classification, and functional analysis of rheumatoid arthritis by using bioinformatics analysis methods.
METHODS: In this study, four datasets containing samples of rheumatoid arthritis were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/, a gene expression database created and maintained by the National Center for Biotechnology Information in the United States). All datasets were publicly available and met ethical requirements. Among them, the datasets GSE55235, GSE55457, and GSE77298 were combined as the training set, and the dataset GSE12021 was used as the validation set. The research process was as follows: (1) the dysregulated state of the cytokine-cytokine receptor interaction pathway in rheumatoid arthritis was analyzed, followed by screening of the differentially expressed genes related to this pathway. (2) The random forest algorithm, the least absolute shrinkage and selection operator, the support vector machine-recursive feature elimination method, the Boruta full feature selection algorithm, and the weighted gene co-expression network analysis were comprehensively adopted to further screen the characteristic genes related to the cytokine-cytokine receptor interaction pathway in rheumatoid arthritis. (3) Based on the differentially expressed genes identified, the unsupervised clustering analysis method was used to divide rheumatoid arthritis into different molecular subtypes, and compare and analyze the differences in the activity of signaling pathways and the level of immune cell infiltration among different subtypes. (4) A cell model of rheumatoid arthritis was constructed to experimentally verify the expression levels of the characteristic genes.
RESULTS AND CONCLUSION: (1) Through the integrated analysis of multiple methods, three characteristic genes were successfully identified. (2) Based on the cytokine-cytokine receptor interaction pathway, rheumatoid arthritis can be divided into two subtypes: the methotrexate-sensitive type and the methotrexate-insensitive type. Based on this classification, it can guide the clinical treatment of rheumatoid arthritis, avoid the blind use of methotrexate, promptly adjust the treatment strategy, select more effective drugs or treatment combinations, thereby improving the treatment effect, alleviating the patients' condition, and enhancing the effectiveness and precision of the treatment of rheumatoid arthritis.

Key words: rheumatoid arthritis, cytokine-cytokine receptor interaction pathway, machine learning, unsupervised clustering analysis

中图分类号: