中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (10): 2641-2652.doi: 10.12307/2026.635

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

筛选动脉粥样硬化线粒体功能障碍与铁死亡相关基因及调控的中药预测

祁  祥1,曹  珊2,陈  健1,张艺嘉3,刘珂珂2,徐子福1,刘  往1,付晓霄1,殷晓磊1   

  1. 河南中医药大学,1中医学院(仲景学院),2医学院,3教务处,河南省郑州市  450046

  • 收稿日期:2025-05-06 接受日期:2025-06-10 出版日期:2026-04-08 发布日期:2025-09-01
  • 通讯作者: 曹珊,医学博士,教授,博士生导师,河南中医药大学医学院,河南省郑州市 450046
  • 作者简介:祁祥,男,1997年生,河南省周口市人,汉族,河南中医药大学在读博士,主要从事中医药防治心脑血管疾病研究。
  • 基金资助:
    河南省自然科学基金项目(242300421295),项目负责人:曹珊;崔应民全国名老中医药专家传承工作室建设项目(国中医药人教函[2022]75号),项目负责人:曹珊;河南省科技攻关项目(232102310434),项目负责人:曹珊;河南省中医药科学研究重大专项课题(2022ZYZD20),项目负责人:曹珊;河南省中医药科学研究重点课题(2023ZY1031),项目负责人:曹珊

Screening of genes related to mitochondrial dysfunction and ferroptosis in atherosclerosis and target prediction of regulatory traditional Chinese medicine

Qi Xiang1, Cao Shan2, Chen Jian1, Zhang Yijia3, Liu Keke2, Xu Zifu1, Liu Wang1, Fu Xiaoxiao1, Yin Xiaolei1   

  1. 1College of Traditional Chinese Medicine (Zhongjing College), 2School of Medicine, 3Academic Affairs Office, Henan University of Chinese medicine, Zhengzhou 450046, Henan Province, China 
  • Received:2025-05-06 Accepted:2025-06-10 Online:2026-04-08 Published:2025-09-01
  • Contact: Cao Shan, MD, Professor, Doctoral supervisor, School of Medicine, Henan University of Chinese medicine, Zhengzhou 450046, Henan Province, China
  • About author:Qi Xiang, PhD candidate, College of Traditional Chinese Medicine (Zhongjing College), Henan University of Chinese medicine, Zhengzhou 450046, Henan Province, China
  • Supported by:
    Henan Provincial Natural Science Foundation, No. 242300421295 (to CS); National Famous Traditional Chinese Medicine Experts Inheritance Studio Construction Project, No. [2022]75 (to CS); Henan Provincial Science and Technology Research Project, No. 232102310434 (to CS); Major Special Project of Henan Traditional Chinese Medicine Scientific Research, No. 2022ZYZD20 (to CS); Key Project of Henan Traditional Chinese Medicine Scientific Research, No. 2023ZY1031 (to CS)

摘要:


文题释义:
动脉粥样硬化:是一种以大、中动脉血管脂质沉积最终形成斑块为病理特征的一类慢性疾病,是心血管疾病的病理基础。动脉粥样硬化发病常伴随着慢性炎症、脂质积聚和免疫功能紊乱等复杂病理表现。近年来的研究发现,线粒体功能障碍和铁死亡广泛参与了动脉粥样硬化的发病。
线粒体功能障碍:指线粒体在能量代谢、氧化还原平衡、细胞信号传导等方面的异常,最终可导致细胞功能受损。线粒体功能障碍与动脉粥样硬化发病密切相关,可通过介导铁死亡、氧化应激、炎症反应等途径参与到动脉粥样硬化的疾病发展。

背景:线粒体功能障碍和铁死亡广泛参与了动脉粥样硬化的发病,研究动脉粥样硬化发病过程中线粒体功能障碍与铁死亡相关生物标志物对该病的诊断与治疗具有重要意义。
目的:基于生物信息学和机器学习算法,探究动脉粥样硬化发病过程中线粒体功能障碍与铁死亡相关生物标志物,并预测潜在调控中药。
方法:从GEO数据库(由美国国立生物技术信息中心于2000年开发的基因表达数据库,收录并整理了全球研究机构和科研工作者提交的基因表达数据)获取动脉粥样硬化疾病数据集GSE100927,并筛选差异表达基因,基于差异基因开展免疫浸润分析。利用加权基因共表达网络分析(WGCNA)获得动脉粥样硬化相关的关键模块基因,将关键模块基因与线粒体功能障碍基因、铁死亡基因以及差异表达基因取交集,基于交集基因对疾病组数据共识聚类分析,鉴定每个聚类亚型之间的差异基因。对差异基因进行富集分析,基于最小绝对收缩和选择算子与随机森林等机器学习方法筛选Hub基因。进一步使用RAW264.7细胞构建动脉粥样硬化细胞模型,基于qPCR对Hub基因进行验证,使用数据库进行Hub基因调控的中药预测。
结果与结论:①将差异表达基因、WGCNA模块基因,线粒体功能和铁死亡特征基因取交集得到5个交集基因,基于这5个基因进行共识聚类分析得到2个亚型,亚型之间的差异分析得到994个线粒体功能与铁死亡相关亚型差异表达基因。通过2种机器算法预测出3个Hub基因,分别为DMTN、FCGR3A与MGST1,结合细胞实验验证后发现DMTN、MGST1可能具有较高的诊断价值。中药预测结果显示,当归、肉桂等中药可能是DMTN、MGST1的调控中药。②结果表明,DMTN、MGST1基因对动脉粥样硬化有一定诊断价值,还可作为动脉粥样硬化发病过程中线粒体功能障碍与铁死亡相关的特征基因,当归、肉桂等中药作为调控以上基因的药物具有一定研究潜力。
https://orcid.org/0009-0005-5845-1431(祁祥)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 生物信息学, 机器学习, 动脉粥样硬化, 线粒体功能障碍, 铁死亡, 免疫细胞, 中药

Abstract: BACKGROUND: Mitochondrial dysfunction and ferroptosis are widely involved in the development of atherosclerosis. Research on biomarkers related to mitochondrial dysfunction and ferroptosis in atherosclerosis is important for disease diagnosis and treatment. 
OBJECTIVE: To investigate mitochondrial dysfunction- and ferroptosis-related biomarkers in the pathogenesis of atherosclerosis using bioinformatics and machine learning algorithms, and to predict potential regulatory traditional Chinese medicines (TCMs). 
METHODS: The atherosclerosis dataset GSE100927 was obtained from the GEO database (which is the gene expression database, developed by the National Center for Biotechnology Information in 2000, collects and organizes gene expression data submitted by research institutions and scientists worldwide), and differentially expressed genes were identified, followed by immune infiltration analysis. Weighted correlation network analysis (WGCNA) identified atherosclerosis-related module genes. These module genes were intersected with mitochondrial dysfunction genes, ferroptosis genes, and differentially expressed genes. Consensus clustering analysis was performed on the disease group data based on the intersected genes, and differentially expressed genes between the clusters were identified. Enrichment analysis of the differentially expressed genes was conducted. Hub genes were screened using machine learning algorithms, including the least absolute shrinkage and selection operator (LASSO) and random forest. An atherosclerosis cell model was constructed using RAW264.7 cells, and hub genes were validated through qPCR. Finally, databases were used to predict TCMs regulating the Hub genes.
RESULTS AND CONCLUSION: Five intersected genes were identified by intersecting differentially expressed genes, WGCNA module genes, and mitochondrial dysfunction- and ferroptosis-related genes. Consensus clustering analysis based on these five genes identified two subtypes. Differential analysis between the subtypes revealed 994 subtype-specific differentially expressed genes related to mitochondrial dysfunction and ferroptosis. Three hub genes, dematin actin binding protein (DMTN), Fc gamma receptor IIIa (FCGR3A), and microsomal glutathione S-transferase 1 (MGST1), were predicted using two machine learning algorithms. Experimental validation suggested that DMTN and MGST1 have significant diagnostic values. TCM prediction results indicated that Angelica sinensis and cinnamon may regulate DMTN and MGST1. To conclude, DMTN and MGST1 have diagnostic values and can serve as characteristic genes related to mitochondrial dysfunction and ferroptosis in atherosclerosis. TCMs such as Angelica sinensis and cinnamon have potential as regulators of these genes and warrant further research.

Key words:  bioinformatics, machine learning, atherosclerosis, mitochondrial dysfunction, ferroptosis, immune cells, traditional Chinese medicines

中图分类号: