[1] MAGID-BERNSTEIN J, GIRARD R, POLSTER S, et al. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions.Circ Res. 2022;130(8):1204-1229.
[2] KASE CS, HANLEY DF. Intracerebral Hemorrhage: Advances in Emergency Care. Neurol Clin. 2021;39(2):405-418.
[3] MOROTTI A, BOULOUIS G, DOWLATSHAHI D, et al. Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol. 2023;22(2):159-171.
[4] 张琳.急性脑出血疾病严重程度及预后的影响因素分析[J].航空航天医学杂志,2024,35(9):1051-1053
[5] WANG M, GE P, JIAO Y, et al. Emergency neurosurgical hybrid operating platform for acute intracranial hemorrhage (E-HOPE). Chin Neurosurg J. 2024;10(1):33.
[6] 刘诗宇,任建伟,刘洁莹.不同时间点中性粒细胞/淋巴细胞比值与急性脑出血后脑水肿程度和短期预后的关系[J].中国现代医学杂志,2021,31(9):18-22
[7] CHEN S, LI L, PENG C, et al. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal. 2022;37(1-3):115-134.
[8] ZHANG BW, SUN KH, LIU T, et al. The Crosstalk Between Immune Cells After Intracerebral Hemorrhage. Neuroscience. 2024;537:93-104.
[9] WAN Y, HOLSTE KG, HUA Y, et al. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis. 2023;176:105948.
[10] DENG Q, YANG Y, BAI H, et al. Predictive Value of Machine Learning Models for Cerebral Edema Risk in Stroke Patients: A Meta-Analysis. Brain Behav. 2025;15(1):e70198.
[11] 顾双双,沙杜鹃,高凤娟,等.基质金属蛋白酶9和中性粒细胞/淋巴细胞比值预测自发性脑出血患者的迟发性血肿周围脑水肿[J].国际脑血管病杂志,2021,29(2):114-119
[12] WANG Y, HUANG H, HE W, et al. Association between serum NLRP3 and malignant brain edema in patients with acute ischemic stroke. BMC Neurol. 2021;21(1):341.
[13] FENG M, AN Y, QIN Q, et al. Sphk1/S1P pathway promotes blood-brain barrier breakdown after intracerebral hemorrhage through inducing Nlrp3-mediated endothelial cell pyroptosis. Cell Death Dis. 2024;15(12):926.
[14] BELLUT M, PAPP L, BIEBER M, et al. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis. 2021;13(1):20.
[15] 李净,温松楠.基于3种机器学习法的太阳辐射模拟研究[J].遥感技术与应用,2020,35(3):615-622.
[16] 杨翀,李旭东,吕良福,等.基于机器学习预测动脉瘤性蛛网膜下腔出血预后模型的临床研究与应用[J].中国医院药学杂志,2024, 44(3):257-262.
[17] HU P, LI Y, LIU Y, et al. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Front Aging Neurosci. 2022;14:857521.
[18] 王家良.临床流行病学:临床科研设计,测量与评价[M].上海:上海科学技术出版社,2014: 157-159.
[19] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019)[J].中华神经科杂志,2019,52(12): 994-1005.
[20] 潘慧斌,王志翔,凌莉,等.神经危重症患者脑水肿急性治疗指南[J].中华急诊医学杂志,2020,29(9):1162-1164
[21] 孙冲,徐迪荣,李碧磊.改良Rankin量表在急性大面积脑梗死长期生存的预后价值[J].医学研究杂志,2012,41(12):179-182
[22] 李倩,刘芸宏,吴晓慧,等.基于决策树和Logistic回归预测出血性脑卒中手术后医院感染风险[J].中华医院感染学杂志,2021, 31(23):3556-3561
[23] 邹琼,吴曦,张杨,等.基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究[J].中国全科医学,2024,27(8):961-970.
[24] 张娟,李海芬,李小曼,等.糖尿病足溃疡复发风险预测模型的构建:基于Logistic回归和支持向量机及BP神经网络模型[J].中国全科医学,2023,26(32):4013-4019.
[25] ZHANG XW, WU Y, WANG DK, et al. Expression changes of inflammatory cytokines TNF-α, IL-1β and HO-1 in hematoma surrounding brain areas after intracerebral hemorrhage. J Biol Regul Homeost Agents. 2019;33(5):1359-1367.
[26] HUANG L, WU Q, YE F, et al. Apolipoprotein E-ε4 allele is associated with perihematomal brain edema and poor outcomes in patients with intracerebral hemorrhage. Sci Rep. 2025;15(1):5682.
[27] WAN Y, HOLSTE KG, HUA Y, et al. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis. 2023;176:105948.
[28] CHEN Y, CHEN S, CHANG J, et al. Perihematomal Edema After Intracerebral Hemorrhage: An Update on Pathogenesis, Risk Factors, and Therapeutic Advances. Front Immunol. 2021;12:740632.
[29] 张奎明,葛鸾蝶,崔应麟,等.康益胶囊对缺血再灌注脑水肿大鼠脑组织AQP4、MMP-9蛋白的影响[J].中国老年学杂志,2023, 43(16):3954-3960.
[30] DODD WS, NODA I, MARTINEZ M, et al. NLRP3 inhibition attenuates early brain injury and delayed cerebral vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2021;18(1):163.
[31] 王萃,王强,赵燕,等. 血清NLRP3、ANGPTL2水平与高血压脑出血患者术后发生脑水肿的关系[J].山东医药,2024,64(31):75-77.
[32] WARE JB, DOLUI S, DUDA J, et al. Relationship of Cerebral Blood Flow to Cognitive Function and Recovery in Early Chronic Traumatic Brain Injury. J Neurotrauma. 2020;37(20):2180-2187.
[33] SUN C, QIN B, ZHANG J, et al. Increased brain volume in the early phase of aneurysmal subarachnoid hemorrhage leads to delayed cerebral ischemia. Front Surg. 2024;11:1467154.
[34] SUN X, SUN G, HE B, et al. Application of 3D visualization technology based on hematoma edge key points setting for emergency hypertensive cerebral hemorrhage surgery in primary hospitals. J Clin Neurosci. 2024;119:39-44.
[35] 郭燕霞,颜敏,李丽,等.有氧运动通过调节海马小胶质细胞表型极化缓解青春期间歇性酒精暴露所致的成年期大鼠认知障碍[J].中国病理生理杂志,2023,39(1):45-54
[36] 王勇,刘海军,徐瑞春,等.MMP-9、TAT及S100β蛋白在老年急性脑出血中的表达及对脑水肿的预测价值[J].中国老年学杂志, 2021,41(19):4172-4175.
[37] 崔承,陈飞龙,李禄全,等.机器学习在新生儿坏死性小肠结肠炎诊疗中的研究进展[J].中国当代儿科杂志,2023,25(7):767-773.
[38] CHOI RY, COYNER AS, KALPATHY-CRAMER J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020;9(2):14.
[39] HAUG CJ, DRAZEN JM. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N Engl J Med. 2023;388(13):1201-1208.
[40] CHEN Y, DU H, WEI BH, et al. Development and validation of risk-stratification delirium prediction model for critically ill patients:a prospective,observational,single-center study. Medicine. 2017; 96(29):e7543.
|