中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (30): 6583-6590.doi: 10.12307/2025.904

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

基于SEER数据库美国脊柱骨肉瘤患者数据:治疗结果及预后预测模型的建立与验证

徐  志1,陈运动2,孙玉洁1,宫宵男3,李豫皖4   

  1. 1张家港市第五人民医院骨科,江苏省张家港市  215600;2新乡医学院第一附属医院骨科,河南省新乡市  453000;3东营市第一人民医院关节外科,山东省东营市  257000;4浙江大学医学院附属第一医院骨科,浙江省杭州市  310009
  • 收稿日期:2024-08-28 接受日期:2024-11-12 出版日期:2025-10-28 发布日期:2025-03-31
  • 通讯作者: 李豫皖,博士,副主任医师,浙江大学医学院附属第一医院骨科,浙江省杭州市 310009
  • 作者简介:徐志,男,1993年生,安徽省泾县人,汉族,2019年遵义医科大学毕业,硕士,主治医师,主要从事四肢关节与运动医学的研究。
  • 基金资助:
    国家自然科学基金青年项目(82302853),项目负责人:李豫皖

Data of spinal osteosarcoma patients in United States based on SEER database: construction and validation of a prediction model for treatment outcomes and prognosis

Xu Zhi1, Chen Yundong2, Sun Yujie1, Gong Xiaonan3, Li Yuwan4   

  1. 1Department of Orthopedics, Zhangjiagang City Fifth People’s Hospital, Zhangjiagang 215600, Jiangsu Province, China; 2Department of Orthopedics, First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, Henan Province, China; 3Orthopedic Joint Surgery, Dongying First People’s Hospital, Dongying 257000, Shandong Province, China; 4Department of Orthopedics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
  • Received:2024-08-28 Accepted:2024-11-12 Online:2025-10-28 Published:2025-03-31
  • Contact: Li Yuwan, MD, Associate chief physician, Department of Orthopedics, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
  • About author:Xu Zhi, MS, Attending physician, Department of Orthopedics, Zhangjiagang City Fifth People’s Hospital, Zhangjiagang 215600, Jiangsu Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 82302853 (to LYW)

摘要:


文题释义:
列线图模型:列线图是一种统计方法,用于预测特定事件的发生概率或风险水平。它通过整合多个相关变量来为个人提供定制化风险评估。这种模型以直观的图形界面呈现,包含明确的线条、数字和标尺,使医疗工作者能够快速评估风险,无需复杂的数学运算。列线图模型在医学和生物统计学领域广泛应用,比如评估疾病风险、治疗效果和患者生存率等。列线图通过综合考量多种因素,提供更加精确和个性化的预测结果,帮助医生更好地理解患者的潜在风险,从而做出更加合理的临床决策。

背景:脊柱骨肉瘤是一种罕见且侵袭性强的恶性肿瘤,现有的研究大多基于小样本量,且结果不一,难以提供可靠的临床指导。特别是在中国,由于脊柱骨肉瘤的发病率较低,相关研究较为有限,临床医生在治疗过程中缺乏有效的预后工具。
目的:构建并验证基于监测、流行病学和最终结果(SEER)数据库的脊柱骨肉瘤患者生存期预测的列线图模型,以期为临床提供科学依据,尤其是对中国患者的治疗方案优化提供借鉴。
方法:回顾性分析SEER数据库中2000-2021年被诊断为脊柱骨肉瘤的美国患者数据,首先通过单因素和多因素Cox比例风险模型分析筛选出与脊柱骨肉瘤特异性死亡相关的独立预后因素;随后利用这些独立预后因素,在Rstudio中使用“rms”包构建了脊柱骨肉瘤特异生存率的列线图模型。模型的区分度通过C指数进行评估,预测能力通过受试者工作特征曲线和曲线下面积值验证,校准度通过校准曲线(Calibration plot)评估,临床价值则通过决策曲线分析衡量。此外,进行Kaplan-Meier生存分析以检测列线图分组的合理性。
结果与结论:①最终模型包括化疗、肿瘤尺寸、组织学类型、分级、种族和是否手术6个变量;②模型在训练集和验证集中的C指数分别为0.685和0.673,表明模型区分度良好;③校准曲线显示预测生存概率与实际生存概率一致性高;④决策曲线分析表明模型在广泛的死亡风险范围内具有较大的净收益;⑤Kaplan-Meier生存分析显示高危组和低危组患者的预后存在显著差异;⑥此次研究构建的列线图模型能够准确预测脊柱骨肉瘤患者的1年、2年和3年生存期,具有较高的临床应用价值;该模型不仅为美国患者提供了有效的生存预测工具,也为中国脊柱骨肉瘤患者的治疗方案优化提供了重要借鉴;未来研究应进一步验证该模型在不同人群中的适用性,并探索新型治疗手段对脊柱骨肉瘤预后的影响,以期提高中国骨肉瘤患者的生存率和生活质量。
https://orcid.org/0000-0003-3298-8765(徐志)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 脊柱骨肉瘤, 列线图模型, 生存期, Cox回归, 预后因素, Kaplan-Meier生存分析, 工程化组织构建

Abstract: BACKGROUND: Spinal osteosarcoma is a rare and highly aggressive malignant tumor. Most existing studies are based on small sample sizes and have inconsistent results, making it difficult to provide reliable clinical guidance. Especially in China, due to the low incidence of spinal osteosarcoma and limited related research, clinicians lack effective prognostic tools during treatment.
OBJECTIVE: To construct and validate a nomogram model for predicting the survival of spinal osteosarcoma patients based on the Surveillance, Epidemiology, and End Results (SEER) database, providing scientific evidence for clinical decision-making, particularly for optimizing treatment plans for Chinese patients.   
METHODS: This study conducted a retrospective analysis of patient data diagnosed with spinal osteosarcoma from the SEER database between 2000 and 2021. First, independent prognostic factors associated with specific mortality from spinal osteosarcoma were identified through univariate and multivariate Cox proportional hazards models. Subsequently, these independent prognostic factors were used to construct a nomogram model for predicting survival rates of spinal osteosarcoma patients using the “rms” package in RStudio. The model’s discrimination was assessed using the C-index. Predictive ability was validated through receiver operating characteristic curves and area under the curve values. Calibration was evaluated by calibration plots, and clinical value was measured using decision curve analysis. Additionally, Kaplan-Meier survival analysis was performed to assess the rationality of the nomogram groupings.   
RESULTS AND CONCLUSION: (1) The final model included six variables: chemotherapy, tumor size, histological type, grade, race, and surgical intervention. (2) The C-indices of the model in the training and validation sets were 0.685 and 0.673, respectively, indicating good discrimination. (3) Calibration curves showed high consistency between predicted survival probabilities and actual survival probabilities. (4) Decision curve analysis indicated that the model provided significant net benefits across a wide range of mortality risks. (5) Kaplan-Meier survival analysis revealed significant differences in prognosis between high-risk and low-risk groups. (6) The constructed nomogram model accurately predicts the 1-year, 2-year, and 3-year survival rates of spinal osteosarcoma patients, demonstrating high clinical applicability. This model not only provides an effective survival prediction tool for American patients but also offers important insights for optimizing treatment plans for spinal osteosarcoma patients in China. Future research should further validate the model’s applicability in different populations and explore the impact of novel treatment methods on the prognosis of spinal osteosarcoma, aiming to improve the survival rates and quality of life of patients in China.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: spinal osteosarcoma, nomogram model, survival, Cox regression, prognostic factor, Kaplan-Meier survival analysis, engineered tissue construction

中图分类号: