中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (4): 1028-1035.doi: 10.12307/2025.972

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

血浆代谢物、免疫细胞与髋骨关节炎的因果推断:GWAS数据欧洲群体资料分析

容向宾1,2,郑海波1,莫学燊1,侯  坤1,曾  平1,3   

  1. 1广西中医药大学,广西壮族自治区南宁市  530222;2广西中医药大学附属瑞康医院,广西壮族自治区南宁市  530011;3广西中医药大学第一附属医院,广西壮族自治区南宁市  530022
  • 收稿日期:2024-11-13 接受日期:2024-12-31 出版日期:2026-02-08 发布日期:2025-05-22
  • 通讯作者: 曾平,主任医师,博士生导师,教授,广西中医药大学,广西壮族自治区南宁市 530222;广西中医药大学第一附属医院,广西壮族自治区南宁市 530022
  • 作者简介:容向宾,男,1981年生,广西壮族自治区钦州市人,汉族,广西中医药大学在读博士,副主任医师,主要从事骨关节创伤及儿童四肢发育畸形的诊治研究。
  • 基金资助:
    国家自然科学基金项目(82160913),项目负责人:曾平;广西中医药大学博士研究生创新项目(YCBZ2023155),项目负责人:容向宾

Plasma metabolites, immune cells, and hip osteoarthritis: causal inference based on GWAS data from European populations

Rong Xiangbin1, 2, Zheng Haibo1, Mo Xueshen1, Hou Kun1, Zeng Ping1, 3   

  1. 1Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China; 2Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China; 3First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530022, Guangxi Zhuang Autonomous Region, China
  • Received:2024-11-13 Accepted:2024-12-31 Online:2026-02-08 Published:2025-05-22
  • Contact: Zeng Ping, Chief physician, Doctoral supervisor, Professor, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China; First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530022, Guangxi Zhuang Autonomous Region, China
  • About author:Rong Xiangbin, MD candidate, Associate chief physician, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China; Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    the National Natural Science Foundation of China, No. 82160913 (to ZP); Guangxi University of Chinese Medicine Doctoral Student Innovation Project, No. YCBZ2023155 (to RXB)   

摘要:


文题释义:
骨关节炎:是一种影响关节的复杂退行性疾病,主要由慢性炎症和代谢因素共同引发。骨关节炎大多出现在髋关节和膝关节,特征是关节软骨损伤、慢性疼痛、关节畸形,最终造成残疾。
双样本孟德尔随机化分析:为一种统计方法,它运用遗传变异作为媒介变量,来推断暴露因素与结局之间的因果关系。双样本孟德尔随机化分析需要2个独立的样本集,一个用于估计暴露与遗传变异之间的关联,另一个用于估计遗传变异与结果之间的关联。

背景:有研究证实,骨关节炎患者体内存在单核细胞、T细胞、B细胞以及自然杀伤细胞(NK细胞)等免疫细胞亚群的功能改变,但具体的调节机制尚不明确。
目的:探究血浆代谢物介导下免疫细胞与髋骨关节炎的因果关系。
方法:以731种免疫细胞的GWAS(由国际组织维护,无特定国家归属,是遗传关联研究数据重要资源库)数据为暴露,髋骨关节炎的GWAS数据为结局,选用1 400种血浆代谢物为中介因素。以双样本孟德尔随机化方法中逆方差加权法为主,使用贝叶斯加权孟德尔随机化方法对逆方差加权法得到的先验分布、样本数据和权重来计算后验分布,根据后验分布来评估逆方差加权分析结果的准确性和可靠性,以
MR_Egger、加权中位数、简单模型、加权模式方法做补充,使用多效性检验和异质性检验确保过程稳健性。使用逆方差加权法分析结果进行后续中介效应分析。 
结果与结论:①逆方差加权法确定了4种免疫细胞与髋骨关节炎强相关,与髋骨关节炎具强相关的代谢物有20种,均无反向因果关系。贝叶斯加权孟德尔随机化分析验证结果提示后验均值与逆方差加权估计值相近,且后验方差较小。最终筛选出1种单核细胞亚型(PDL-1 on CD14-CD16+)与髋骨关节炎存在因果关系,总效应为-0.047(OR=0.954,95%CI=0.926-0.983),并且在蒜氨酸的中介效应为-0.004(OR=0.939, 95%CI=0.902-0.978),占总效应的8.5%,说明蒜氨酸是髋骨关节炎进展的保护因素,在此过程中该代谢物发挥了中介作用。②国际数据库和欧洲群体分析数据量较大,对中国生物医学有借鉴意义,能为中国人群相似疾病遗传易感基因研究提供线索,有助于发现特有关联;可借鉴其药物基因组学思路,筛选中国人群药物反应基因,提升个体化用药精准性;可学习其先进高通量技术与统计方法,用于疾病防治研究。
https://orcid.org/0000-0003-0262-9585(容向宾)

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 免疫细胞, 血浆代谢物, 髋骨关节炎, 双样本孟德尔随机化分析, 中介分析, 工程化组织构建

Abstract: BACKGROUND: Some studies have confirmed the changes in the function of immune cell subsets such as monocytes, T cells, B cells, and natural killer cells (NK cells) in patients with osteoarthritis, but the specific regulatory mechanisms are unclear.
Objective: To explore the causal relationship between plasma metabolite-mediated immune cells and hip osteoarthritis. 
METHODS: The Genome-Wide Association Studies (GWAS) data of 731 immune cells were used as the exposure, the GWAS data of hip osteoarthritis were used as the outcome, and 1 400 plasma metabolites were selected as mediating factors. The GWAS database is an important database for genetic association studies, maintained by international organizations with no country-specific affiliation. The inverse variance weighting method in the two-sample Mendelian randomization method was the main method, and the Bayesian weighted Mendelian randomization method was used to analyze the prior distribution, sample data and weights, which were then used to calculate the posterior distribution. The accuracy and reliability of the inverse variance weighting results were evaluated according to the posterior distribution, supplemented by MR-Egger, weighted median, simple model, and weighted mode methods. The pliotropy test and heterogeneity test were used to ensure the robustness of the process. The results of the inverse variance weighting method were used for subsequent mediating effect analysis. 
RESULTS AND CONCLUSION: (1) The inverse variance weighting method identified 4 immune cells strongly correlated with hip osteoarthritis, and 20 metabolites strongly associated with hip osteoarthritis, all of which had no reverse causal relationship. At the same time, the validation results of Bayesian weighted Mendelian randomization method showed that the posterior mean value was similar to the estimated value of the inverse variance weighting, and the posterior variance was relatively lower. One monocyte subtype (PDL-1 on CD14-CD16+) was finally screened out to have a causal relationship with hip osteoarthritis, with a total effect of -0.047 (odds ratio=0.954, 95% confidence interval: 0.926-0.983), and a mediating effect of -0.004 (odds ratio=0.939, 95% confidence interval: 0.902-0.978) mediated by alliin levels, accounting for 8.5% of the total effect. It was concluded that alliin is a protective factor in the progression of hip osteoarthritis, in which this metabolite plays a mediating role. (2) The large amount of data from international databases and European population analysis is of great significance to Chinese biomedicine, which can provide clues for research on the genetic susceptibility to similar diseases in the Chinese population, aiding in discovering the unique associations. The pharmacogenomic approaches used can be adapted to screen for drug response genes in the Chinese population, enhancing the precision of personalized medicine. Additionally, the advanced high-throughput technologies and statistical methods employed can be learned and applied to disease prevention and treatment research.

Key words: immune cells, plasma metabolites, hip osteoarthritis, two-sample Mendelian randomization analysis, mediation analysis, engineered tissue construction

中图分类号: