[1] FEIGIN VL, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18-29.
[2] WESSELHOFF S, HANKE TA, EVANS CC. Community mobility after stroke: a systematic review. Top Stroke Rehabil. 2018;25(3):224-238.
[3] LE FRANC S, HERRERA ALTAMIRA G, GUILLEN M, et al. Toward an adapted neurofeedback for post-stroke motor rehabilitation: state of the art and perspectives. Front Hum Neurosci. 2022;16:917909.
[4] KHALID S, MALIK AN, SIDDIQI FA, et al. Overview of gait rehabilitation in stroke.J Pak Med Assoc. 2023;73(5):1142-1145.
[5] PATTERSON KK, PARAFIANOWICZ I, DANELLS CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2): 304-310.
[6] TAPP A, GRISWOLD D, DRAY D, et al. High-intensity locomotor training during inpatient rehabilitation improves the discharge ambulation function of patients with stroke. A systematic review with meta-analysis. Top Stroke Rehabil. 2024;31(5):431-445.
[7] MARÍN-MEDINA DS, ARENAS-VARGAS PA, ARIAS-BOTERO JC, et al. New approaches to recovery after stroke. Neurol Sci. 2024;45(1):55-63.
[8] HOSSAIN KM, ISLAM MA, HOSSAIN S, et al. Status of deep learning for EEG-based brain-computer interface applications. Front Comput Neurosci. 2023;16:1006763.
[9] LIU X, ZHANG W, LI W, et al. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial. BMC Neurol. 2023;23(1):136.
[10] ZHAO CG, JU F, SUN W, et al. Effects of training with a brain-computer interface-controlled robot on rehabilitation outcome in patients with subacute stroke: A randomized controlled trial. Neurol Ther. 2022;11(2):679-695.
[11] YUAN Z, PENG Y, WANG L, et al. Effect of BCI-controlled pedaling training system with multiple modalities of feedback on motor and cognitive function rehabilitation of early subacute stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2569-2577.
[12] MCCRIMMON CM, KING CE, WANG PT, et al. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. J Neuroeng Rehabil. 2015;12:1-12.
[13] CHUNG E, LEE BH, HWANG S. Therapeutic effects of brain-computer interface-controlled functional electrical stimulation training on balance and gait performance for stroke: A pilot randomized controlled trial. Medicine. 2020;99(51):e22612.
[14] LUU TP, HE Y, BROWN S, et al. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. J Neural Eng. 2016;13(3):036006.
[15] LIMA JPS, SILVA LA, DELISLE-RODRIGUEZ D, et al. Unraveling Transformative Effects after tDCS and BCI Intervention in Chronic Post-Stroke Patient Rehabilitation-An Alternative Treatment Design Study. Sensors (Basel). 2023;23(23):9302.
[16] CHAI X, CAO T, HE Q, et al. Brain-computer interface digital prescription for neurological disorders. CNS Neurosci Ther. 2024;30(2):e14615.
[17] ZHANG J, LI J, HUANG Z, et al. Recent progress in wearable brain-computer interface (BCI) devices based on electroencephalogram (EEG) for medical applications: a review. Health Data Sci. 2023;3:0096.
[18] ABIRI R, BORHANI S, SELLERS EW, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019; 16(1):011001.
[19] BU Y, HARRINGTON DL, LEE RR, et al. Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning. Cereb Cortex. 2023;33(14):8942-8955.
[20] PAULMURUGAN K, VIJAYARAGAVAN V, GHOSH S, et al. Brain-computer interfacing using functional near-infrared spectroscopy (fNIRS). Biosensors (Basel). 2021;11(10):389.
[21] SEBASTIÁN-ROMAGOSA M, CHO W, ORTNER R, et al. Brain-computer interface treatment for gait rehabilitation in stroke patients. Front Neurosci. 2023;17:1256077.
[22] PROULX CE, LOUIS JEAN MT, HIGGINS J, et al. Somesthetic, visual, and auditory feedback and their interactions applied to upper limb neurorehabilitation technology: a narrative review to facilitate contextualization of knowledge. Front Rehabil Sci. 2022;3:789479.
[23] XU L, XU M, JUNG TP, et al. Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface. Cogn Neurodyn. 2021;15:569-584.
[24] BUCH E, WEBER C, COHEN LG, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39(3):910-917.
[25] GOMEZ-PILAR J, CORRALEJO R, NICOLAS-ALONSO LF, et al. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med Biol Eng Comput. 2016;54:1655-1666.
[26] SIEGHARTSLEITNER S, SEBASTIÁN-ROMAGOSA M, CHO W, et al. Upper extremity training followed by lower extremity training with a brain-computer interface rehabilitation system. Front Neurosci. 2024;18: 1346607.
[27] 王维振,曲皓,雷杨浩,等.下肢运动想象脑机接口的研究进展及康复应用[J].北京生物医学工程,2023,42(2):204-211.
[28] 蒋咏春,尹浚骁,赵碧仪,等.运动想象脑机接口技术在脑卒中后运动功能康复中的应用[J].康复学报,2023,33(6):562-570.
[29] MANE R, WU Z, WANG D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol. 2022;7(6):541-549.
[30] REHAN YOUSSEF A, MORSY A. Assistive technology: opportunities for societal inclusion of persons with disabilities and independence of the elderly. BMC Biomed Eng. 2023;5(1):6.
[31] COLUCCI A, VERMEHREN M, CAVALLO A, et al. Brain-computer interface-controlled exoskeletons in clinical neurorehabilitation: ready or not? Neurorehabil Neural Repair. 2022;36(12):747-756.
[32] BARRIA P, PINO A, TOVAR N, et al. BCI-based control for ankle exoskeleton T-FLEX: comparison of visual and haptic stimuli with stroke survivors. Sensors (Basel). 2021;21(19):6431.
[33] 唐欢,苏彬,车培,等.脑机接口联合末端驱动型下肢机器人对脑卒中患者平衡及步行功能的影响[J].中国康复医学杂志,2024, 39(6):791-797.
[34] BOUTON CE. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration. Handb Clin Neurol. 2020;168:303-309.
[35] TABERNIG CB, CARRERE LC, MANRESA JB, et al. Does feedback based on FES-evoked nociceptive withdrawal reflex condition event-related desynchronization? An exploratory study with brain-computer interfaces. Biomed Phys Eng Express. 2021;7(6):065003.
[36] XIE P, WANG Z, LI Z, et al. Research on rehabilitation training strategies using multimodal virtual scene stimulation. Front Aging Neurosci. 2022;14:892178.
[37] SEGEAR S, CHHEANG V, BARON L, et al. Visual feedback and guided balance training in an immersive virtual reality environment for lower extremity rehabilitation. Comput Graph. 2024;119:103880.
[38] WEN D, FAN Y, HSU SH, et al. Combining brain–computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review. Ann Phys Rehabil Med. 2021;64(1):101404.
[39] WEN D, LIANG B, ZHOU Y, et al. The current research of combining multi-modal brain-computer interfaces with virtual reality. IEEE J Biomed Health Inform. 2020;25(9):3278-3287.
[40] HA J, PARK S, IM CH. Novel hybrid brain-computer interface for virtual reality applications using steady-state visual-evoked potential-based brain-computer interface and electrooculogram-based eye tracking for increased information transfer rate. Front Neuroinform. 2022;16:758537.
[41] LIU H, WANG Z, LI R, et al. A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance. Front Neurosci. 2024;18:1367932.
[42] XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol. 2020;57(10): 4218-4231.
[43] TEASELL RW, FERNANDEZ MM, MCINTYRE A, et al. Rethinking the continuum of stroke rehabilitation. Arch Phys Med Rehabil. 2014;95(4): 595-596.
[44] MANE R, CHOUHAN T, GUAN C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng. 2020;17(4):041001.
[45] NIERHAUS T, VIDAURRE C, SANNELLI C, et al. Immediate brain plasticity after one hour of brain-computer interface (BCI). J Physiol. 2021;599(9):2435-2451.
[46] 方文垚,刘昊,杨柳,等.脑机接口技术在脑卒中偏瘫患者下肢运动功能康复治疗中的应用[J].山东医药,2018,58(10):66-68.
[47] 燕桢,张立新.脑机接口在康复治疗中的应用[J].中国康复医学杂志,2020,35(2):228-232.
[48] MRACHACZ-KERSTING N, IBÁÑEZ J, FARINA D. Towards a mechanistic approach for the development of non-invasive brain-computer interfaces for motor rehabilitation. J Physio. 2021;599(9):2361-2374.
[49] LORUSSO M, TRAMONTANO M, CASCIELLO M, et al. Efficacy of overground robotic gait training on balance in stroke survivors: a systematic review and meta-analysis. Brain Sci. 2022;12(6):713.
[50] KHRULEV AE, KURYATNIKOVA KM, BELOVA AN, et al. Modern Rehabilitation Technologies of Patients with Motor Disorders at an Early Rehabilitation of Stroke. Sovrem Tekhnologii Med. 2022;14(6):64-78. |