中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (10): 1990-1996.doi: 10.12307/2025.230

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

骨植入材料表面微结构对MC3T3-E1成骨细胞成骨分化的影响

黄丽苹1,李  卉2,王新革3,王  瑞4,常  蓓5,李适廷1,兰小蓉1,李广文   

  1. 1西南医科大学附属口腔医院,种植科,口颌面修复重建和再生泸州市重点实验室,四川省泸州市  646000;2西南医科大学公共卫生学院流行病与统计教研室,四川省泸州市  646000;3军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔医学重点实验室,第四军医大学口腔医院修复科,陕西省西安市  710032;4空军军医大学唐都医院军队人员医疗保健中心,陕西省西安市  710032;5火箭军特色医学中心口腔科,北京市  100088
  • 收稿日期:2023-11-30 接受日期:2024-01-22 出版日期:2025-04-08 发布日期:2024-08-20
  • 通讯作者: 李广文,博士在读,主治医师,西南医科大学附属口腔医院,种植科,口颌面修复重建和再生泸州市重点实验室,四川省泸州市 646000;军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔医学重点实验室,第四军医大学口腔医院修复科,陕西省西安市 710032
  • 作者简介:黄丽苹,女,1994年生,四川省眉山市人,汉族,硕士,主要从事种植体表面处理及成骨分化方面的研究。
  • 基金资助:
    四川省科技厅重点研发项目(22YFS0634),项目负责人:兰小蓉;泸州市科技局重点研发计划(面上)(2022-SYF-33),项目负责人:李广文;西南医科大学自科重点项目(2022ZD015),项目负责人:李广文;西南医科大学附属口腔医院院级重点项目(2022Z01),项目负责人:李广文

Effects of microstructured bone implant material surfaces on osteogenic function of MC3T3-E1 osteoblasts

Huang Liping1, Li Hui2, Wang Xinge3, Wang Rui4, Chang Bei5, Li Shiting1, Lan Xiaorong1, Li Guangwen1, 3   

  1. 1Department of Implantology, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan Province, China; 2Department of Epidemiology and Statistics, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan Province, China; 3State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China; 4Medical Care Center for Military Personnel, Tangdu Hospital, Air Force Military Medical University, Xi’an 710032, Shaanxi Province, China; 5Department of Stomatology, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
  • Received:2023-11-30 Accepted:2024-01-22 Online:2025-04-08 Published:2024-08-20
  • Contact: Li Guangwen, Doctoral candidate, Attending physician, Department of Implantology, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan Province, China; State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
  • About author:Huang Liping, Master, Department of Implantology, The Affiliated Stomatological Hospital, Southwest Medical University; Luzhou Key Laboratory of Oral Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan Province, China
  • Supported by:
    Key Research & Development Project of Science and Technology Department of Sichuan Province, No. 22YFS0634 (to LXR); Key Research and Development Plan of Luzhou Science and Technology Bureau (General Program), No. 2022-SYF-33 (to LGW); Key Project of Self-Discipline of Southwest Medical University, No. 2022ZD015 (to LGW); Hospital level Key Project of Stomatology Hospital Affiliated to Southwest Medical University, No. 2022Z01 (to LGW)

摘要:

文题释义:
钛表面微纳结构:是指在钛材料表面形成具有微米和纳米级别特征的结构,通过扫描电镜和原子力显微镜等技术可以观察到钛表面微纳形貌的特征,如微小凹坑和纳米管,这种微纳米形貌能够显著影响钛材料的生物相容性和成骨性能。
机械敏感通道蛋白1(piezo type mechanosensitive ion channel component 1,PIEZO1):是一种机械敏感通道蛋白,能够感知和响应机械刺激,它在细胞膜上形成的离子通道可以将细胞外的机械刺激转化为生化信号,从而调节细胞的生物学反应。机械敏感通道蛋白1在多种生物物理刺激下被激活,包括细胞外基质的硬度、膜的拉伸、静压力和流体剪切力等,通过激活细胞膜的机械传感器,将机械刺激传导到细胞内的下游信号通路,从而调控细胞的功能。

背景:骨植入材料表面微纳结构仿生设计可模拟人体天然骨组织中细胞外环境的结构,从而获得较为理想的骨整合功能,但骨植入材料表面微纳结构调控细胞功能及促进成骨的机制还有待进一研究。
目的:分析钛片材料微结构表面对MC3T3-E1成骨细胞成骨分化的影响。
方法:①在5 V或20 V恒定电压下,采用酸蚀和阳极氧化技术在钛片表面制备不同管径的纳米管阵列,分别记为R5组、R20组。检测纯钛片(未经酸蚀和阳极氧化处理)、R5组、R20组的表面形貌、粗糙度与亲水性。②将对数生长期的MC3T3-E1成骨细胞分别接种于纯钛片、R5组、R20组钛片表面,成骨诱导培养24 h后,采用RT-PCR检测与免疫荧光染色分析细胞机械敏感通道蛋白1的表达;加入含或不含机械敏感通道蛋白1激活剂Yada1的成骨诱导基,培养7 d后进行碱性磷酸酶染色,培养14 d后进行茜素红染色。
结果与结论:①扫描电镜下可见纯钛片表面光滑,R5组、R20组钛片表面可见分布相对均匀且有序的纳米管阵列,平均直径分别约30 nm和100 nm,原子力显微镜进一步验证了扫描电镜观察结果。R5组钛片表面粗糙度大于纯钛片(P < 0.05),水接触角小于纯钛片(P < 0.05);R20组钛片表面粗糙度大于R5组(P < 0.05),水接触角小于R5组(P < 0.05)。②RT-PCR检测与免疫荧光染色显示,R5组细胞机械敏感通道蛋白1的表达高于纯钛片组(P < 0.05),R20组细胞机械敏感通道蛋白1的表达高于R5组(P < 0.05)。在成骨诱导条件下,与未加入Yada1情况相比,纯钛片组加入Yada1后的细胞碱性磷酸酶活性、钙化结节沉积均无明显变化,R5组、R20组加入Yada1后的细胞碱性磷酸酶活性、钙化结节沉积均显著增加(P < 0.05);在加入或未加入Yada1情况下,R5组细胞碱性磷酸酶活性与钙化结节沉积均多于纯钛片组(P < 0.05),R20组细胞碱性磷酸酶活性与钙化结节沉积均多于R5组(P < 0.05)。③结果表明,钛片表面微结构可通过激活机械敏感通道蛋白1促进成骨细胞MC3T3-E1的成骨分化。

https://orcid.org/0009-0004-0025-6775(黄丽苹)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 骨植入材料">, 钛种植体">, 材料微结构">, 机械敏感通道蛋白">, 成骨分化">, PIEZO1

Abstract: BACKGROUND: The micro/nanostructured gradient biomimetic surface of implant materials can simulate the structure of the extracellular environment in human bone tissue, thereby achieving perfect bone integration function. However, further research is needed on the mechanisms by which the surface microstructure of bone implant materials regulates cell function and promotes osteogenesis.
OBJECTIVE: To analyze the effect of titanium sheet microstructure surface on osteogenic differentiation of MC3T3-E1 osteoblasts. 
METHODS: (1) At a constant voltage of 5 V or 20 V, nanotube arrays of different diameters were prepared on the surface of titanium sheets by acid etching and anodic oxidation techniques, and were recorded as group R5 and group R20, respectively. The surface morphology, roughness, and hydrophilicity of pure titanium sheet (without acid etching or anodizing treatment) were measured in group R5 and group R20. (2) MC3T3-E1 osteoblasts of logarithmic growth stage were inoculated on the surface of pure titanium sheets, R5 group and R20 group respectively. After 24 hours of osteogenic induction culture, the expression of mechanical sensitive channel protein 1 was analyzed by RT-PCR and immunofluorescence staining. Osteoblast inducible base with or without the mechanosensitive channel protein 1 activator Yada1 was added, and alkaline phosphatase staining was performed after 7 days of culture. Alizarin red staining was performed after 14 days of culture.
RESULTS AND CONCLUSION: (1) The surface of pure titanium sheets was smooth under scanning electron microscope. Relatively uniform and orderly nanotube arrays with average diameters of about 30 nm and 100 nm were observed on the surface of titanium sheets of groups R5 and R20, respectively. The results of scanning electron microscope were further verified by atomic force microscopy. The surface roughness of titanium sheet of group R5 was higher than that of pure titanium (P < 0.05), and the water contact angle was lower than that of pure titanium (P < 0.05). The surface roughness of titanium sheet in group R20 was higher than that in group R5 (P < 0.05), and the water contact angle was lower than that in group R5 (P < 0.05). (2) RT-PCR and immunofluorescence staining showed that the expression of mechanosensitive channel protein 1 in group R5 was higher than that in pure titanium group (P < 0.05), and the expression of mechanosensitive channel protein 1 in group R20 was higher than that in group R5 (P < 0.05). Under the osteogenic induction, compared with the condition without Yada1, there were no significant changes in the activity of alkaline phosphatase and the deposition of calcified nodules in pure titanium group after Yada1 addition, while the activity of alkaline phosphatase and the deposition of calcified nodules in groups R5 and R20 after Yada1 addition were significantly increased (P < 0.05). With or without Yada1, the alkaline phosphatase activity and calcified nodule deposition in group R5 were higher than those in pure titanium group (P < 0.05), and the alkaline phosphatase activity and calcified nodule deposition in group R20 were higher than those in group R5 (P < 0.05). (3) The results show that the surface microstructure of titanium sheet can promote the osteogenic differentiation of osteoblast MC3T3-E1 by activating mechanosensitive channel protein 1.

Key words: bone implant material">, titanium implant">, material microstructure">, mechanosensitive channel protein">, osteogenic differentiation">, PIEZO1

中图分类号: