中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (3): 637-644.doi: 10.12307/2025.117

• 植入物相关大数据分析 Implant related big data analysis • 上一篇    下一篇

骨关节炎核心基因的生物信息学鉴定

朱雪坤,刘  恒,冯  晖,高云龙,文  磊,蔡筱松,赵  奔,仲  敏   

  1. 陆军第七十一集团军医院,江苏省徐州市   221000
  • 收稿日期:2023-08-16 接受日期:2024-02-06 出版日期:2025-01-28 发布日期:2024-06-05
  • 通讯作者: 刘恒,硕士,主治医师,陆军第七十一集团军医院骨科,江苏省徐州市 221000
  • 作者简介:朱雪坤,男,1988年生,安徽省灵璧县人,汉族,2015年安徽医科大学研究生学院毕业,硕士,主治医师,主要从事运动创伤与关节镜方面的研究。

Identification of core genes of osteoarthritis by bioinformatics

Zhu Xuekun, Liu Heng, Feng Hui, Gao Yunlong, Wen Lei, Cai Xiaosong, Zhao Ben, Zhong Min   

  1. Army Seventy-One Army Group Hospital, Xuzhou 221000, Jiangsu Province, China
  • Received:2023-08-16 Accepted:2024-02-06 Online:2025-01-28 Published:2024-06-05
  • Contact: Liu Heng, Master, Attending physician, Army Seventy-One Army Group Hospital, Xuzhou 221000, Jiangsu Province, China
  • About author:Zhu Xuekun, Master, Attending physician, Army Seventy-One Army Group Hospital, Xuzhou 221000, Jiangsu Province, China

摘要:

文题释义:

生物信息学:是综合多个学科技能知识的交叉学科,如生物学、应用数学、统计学及信息工程等。主要通过基因测序作为数据源,根据基因表达或者蛋白之间的相互关系,通过计算机开发不同的软件和数学多维度算法进行数据的统计,从而获得有用的生物数据。
加权基因共表达网络分析:是一种系统生物学分析的方法,主要用于分析微阵列或者基因表达之间的联系,首先根据基因表达进行网格化,然后根据不同基因节点的联系程度进行归类基因集模块化,并将特定的基因模块与临床相关性联系,寻求模块与临床最大的相关性,或者探索模块内与临床相关的核心基因。

摘要
背景:目前骨关节炎成为影响老年人生活质量的主要疾病,治疗效果欠佳,临床治疗措施主要集中在阻止疾病的进程,同时骨关节炎的发病机制尚不完全清楚。为了探索骨关节炎的主要发病机制和基因编码调控的相关机制,进行生物信息学分析。
目的:通过基因表达谱筛选出在骨关节炎中起主要作用的核心差异基因。
方法:从基因表达综合数据库(GEO)下载数据集:GSE114007、GSE117999和GSE129147,利用R软件筛选出GSE114007和GSE117999数据合集的差异基因,将差异基因进行加权基因共表达网络分析,选择和骨关节炎最相关的模块基因并进行蛋白互作分析,利用cytocape软件筛选出候选核心基因,随后将候选核心基因进行最小绝对收缩和选择算子回归(LASSO回归)和COX分析,鉴定出在骨关节炎中起关键作用的核心基因,利用外部数据集GSE129147验证核心基因的准确性。
结果与结论:①共鉴定出477个差异基因,加权基因共表达网络分析获得265个和骨关节炎相关的差异基因,共鉴定8个候选核心基因,LASSO回归分析最终获得了一个具有核心价值的差异基因ASPM并进行了外部验证;②提示通过生物信息学筛选出基因ASPM表达异常在骨关节炎中起到关键核心作用。

关键词: 骨关节炎, 差异表达基因, 核心差异基因, 生物信息学, LASSO回归分析

Abstract: BACKGROUND: At present, osteoarthritis has become a major disease affecting the quality of life of the elderly, and the therapeutic effect is poor, often focusing on preventing the disease process, and the pathogenesis of osteoarthritis is still not fully understood. Bioinformatics analysis was carried out to explore the main pathogenesis of osteoarthritis and related mechanisms of gene coding regulation. 
OBJECTIVE: To screen core differential genes with a major role in osteoarthritis by gene expression profiling. 
METHODS: Datasets were downloaded from the Gene Expression Omnibus (GEO): GSE114007, GSE117999, and GSE129147. Differential genes in the GSE114007 and GSE117999 data collections were screened using R software, performing differential genes to weighted gene co-expression network analysis. The module genes most relevant to osteoarthritis were selected to perform protein interaction analysis. Candidate core genes were selected using the cytocape software. The candidate core genes were subsequently subjected to least absolute shrinkage and selection operator regression and COX analysis to identify the core genes with a key role in osteoarthritis. The accuracy of the core genes was validated using an external dataset, GSE129147. 
RESULTS AND CONCLUSION: (1) A total of 477 differential genes were identified, 265 differential genes associated with osteoarthritis were obtained by weighted gene co-expression network analysis, and 8 candidate core genes were identified. The least absolute shrinkage and selection operator regression analysis finally yielded a differential gene ASPM with core value that was externally validated. (2) It is concluded that abnormal gene ASPM expression screened by bioinformatics plays a key central role in osteoarthritis. 

Key words: osteoarthritis, differentially expressed gene, core differentially expressed gene, bioinformatics, LASSO regression analysis

中图分类号: