[1] MORAN A, GU D, ZHAO D, et al. Future cardiovascular disease in china: markov model and risk factor scenario projections from the coronary heart disease policy model-china.Circ Cardiovasc Qual Outcomes. 2010;3(3):243-252.
[2] Gude NA, Broughton KM, Firouzi F, et al. Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nat Rev Cardiol. 2018;15(9):523-542.
[3] Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol. 2016;594(8):2061-2073.
[4] Liao PH, Hsieh DJ, Kuo CH, et al. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. Oncotarget. 2015;6(34):35383-35394.
[5] Shen T, Liu X, Zhuang B, et al. Efficacy and Safety of Different Aerobic Exercise Intensities in Patients With Heart Failure With Reduced Ejection Fraction: Design of a Multicenter Randomized Controlled Trial (HF-EI Trial). Front Cardiovasc Med. 2021;8:705972.
[6] Guo M, Lu B, Gan J, et al. Apoptosis detection: a purpose-dependent approach selection. Cell Cycle. 2021;20(11):1033-1040.
[7] Liu Y, Xue N, Zhang B, et al. Role of Thioredoxin-1 and its inducers in human health and diseases. Eur J Pharmacol. 2022;919:174756.
[8] Murata R, Watanabe H, Nosaki H, et al. Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics. 2022;14(3):562.
[9] 张丽红,李海涛,马建林,等.血清Trx1、FGL2与急性心肌梗死后心力衰竭患者预后的关系[J].现代生物医学进展,2023,23(11): 2102-2107.
[10] Kaplán P, Tatarková Z, Lichardusová L, et al. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res. 2019;68(6):883-892.
[11] BEDFORD TG, TIPTON CM, WILSON NC, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(6):1278-1283.
[12] 刘文锋,刘少鹏,傅让,等. 耐力运动对增龄大鼠脑皮层突触可塑性的影响及相关调控机制[J].中国应用生理学杂志,2019,35(4): 339-345,350.
[13] 刘吉焕,王鹏,袁顺灵,等.有氧耐力运动调控大鼠心肌细胞自噬的机制[J].中国组织工程研究,2023,27(23):3714-3720.
[14] LI W, LIU F. Myocardial Cell Aging in the Elderly. Aging Pathobiol Ther. 2020; 2(3):134-142.
[15] Eng J, McClelland RL, Gomes AS, et al. Adverse Left Ventricular Remodeling and Age Assessed with Cardiac MR Imaging: The Multi-Ethnic Study of Atherosclerosis. Radiology. 2016;278(3):714-722.
[16] Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70-99.
[17] Beliveau P, Cheriet F, Anderson SA, et al. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation. Comput Biol Med. 2015;65:103-113.
[18] Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. Front Physiol. 2022;13:866792.
[19] Darband SG, Sadighparvar S, Yousefi B, et al. Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflugers Arch. 2020;472(2):169-178.
[20] Fatahi A, Zarrinkalam E, Azizbeigi K, et al. Cardioprotective effects of exercise preconditioning on ischemia-reperfusion injury and ventricular ectopy in young and senescent rats. Exp Gerontol. 2022;162:111758.
[21] 李欣,丁树哲,卢健.耐力训练对衰老小鼠心肌Akt/mTOR信号通路的影响[J].中国运动医学杂志,2010,29(1): 38-41.
[22] SAVITSKAYA MA, ONISHCHENKO GE. Mechanisms of Apoptosis. Biochemistry (Mosc). 2015;80(11):1393-1405.
[23] Moldoveanu T, Follis AV, Kriwacki RW, et al. Many players in BCL-2 family affairs. Trends Biochem Sci. 2014;39(3):101-111.
[24] Ludwig LM, Maxcy KL, LaBelle JL. Flow Cytometry-Based Detection and Analysis of BCL-2 Family Proteins 4and Mitochondrial Outer Membrane Permeabilization (MOMP). Methods Mol Biol. 2019; 1877:77-91.
[25] Pereira RM, Mekary RA, da Cruz Rodrigues KC, et al. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev. 2018;23(1):123-129.
[26] DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev. 2017;33:89-104.
[27] Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49-63.
[28] No MH, Heo JW, Yoo SZ, et al. Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart. Pflugers Arch. 2020;472(2):179-193.
[29] Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20(6):791-793.
[30] Pei Z, Yang C, Guo Y, et al. Effect of different exercise training intensities on age-related cardiac damage in male mice. Aging (Albany NY). 2021;13(17):21700-21711.
[31] Kwak HB, Lee Y, Kim JH, et al. MnSOD overexpression reduces fibrosis and pro-apoptotic signaling in the aging mouse heart. J Gerontol A Biol Sci Med Sci. 2015;70(5):533-544.
[32] Lu J, Holmgren A. Thioredoxin system in cell death progression. Antioxid Redox Signal. 2012;17(12):1738-1747.
[33] Bjørklund G, Zou L, Peana M, et al. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel). 2022;11(11):2161.
[34] McCarver AC, Lessner DJ. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans. FEBS J. 2014;281(20):4598-4611.
[35] Yu Y, Xing K, Badamas R, et al. Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radic Biol Med. 2013;57:92-104.
[36] 黄云霞,时杜娟,蒙玉娜,等.弥漫大B细胞淋巴瘤中Trx、TrxR-1及TXNIP的表达及临床意义[J]. 临床与实验病理学杂志,2022,38(4): 443-447.
[37] Mitchell DA, Morton SU, Fernhoff NB, et al. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 2007;104(28):11609-11614.
[38] Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005;1(3):154-158.
[39] Mahmood DF, Abderrazak A, El Hadri K, et al. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 2013;19(11):1266-1303.
[40] Pérez VI, Lew CM, Cortez LA, et al. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med. 2008;44(5):882-892.
[41] Li Y, Xu P, Wang Y, et al. Different Intensity Exercise Preconditions Affect Cardiac Function of Exhausted Rats through Regulating TXNIP/TRX/NF-ĸBp65/NLRP3 Inflammatory Pathways. Evid Based Complement Alternat Med. 2020;2020:5809298.
[42] Marschner RA, Banda P, Wajner SM, et al. Short-term exercise training improves cardiac function associated to a better antioxidant response and lower type 3 iodothyronine deiodinase activity after myocardial infarction. PLoS One. 2019;14(9):e0222334.
[43] 黄海高,李悦山.Trx-ASK1在多柔比星诱导的乳鼠心肌细胞凋亡中的作用[J].中国病理生理杂志,2012,28(6):1028-1033.
[44] 赵晓琴,赵俊杰,李晓宇,等.2型糖尿病大鼠心肌损伤时心肌组织中硫氧还蛋白系统的变化[J]. 生理学报,2010,62(3): 261-268.
[45] Liu Q, Sargent MA, York AJ, et al. ASK1 regulates cardiomyocyte death but not hypertrophy in transgenic mice. Circ Res. 2009;105(11): 1110-1117.
|