中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (15): 2391-2397.doi: 10.12307/2024.376

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

基于MRI心脏瓣膜支架建模的比较及分析

崔艺文,袁  泉,刘继凯   

  1. 山东大学机械工程国家级实验教学示范中心,高效洁净机械制造教育部重点实验室,山东省济南市  250061
  • 收稿日期:2023-03-16 接受日期:2023-06-08 出版日期:2024-05-28 发布日期:2023-09-23
  • 通讯作者: 袁泉,教授,山东大学机械工程国家级实验教学示范中心,高效洁净机械制造教育部重点实验室,山东省济南市 250061
  • 作者简介:崔艺文,女,2000年生,山东省淄博市人,汉族,山东大学机械工程学院在读硕士,主要从事生物力学方面的研究。
  • 基金资助:
    山东省自然科学基金项目(ZR2020ME143),项目负责人:袁泉

Comparison and analysis of modeling heart valve bracket based on magnetic resonance imaging

Cui Yiwen, Yuan Quan, Liu Jikai   

  1. National Demonstration Center for Experimental Mechanical Engineering Education of Shandong University, Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, Shandong Province, China
  • Received:2023-03-16 Accepted:2023-06-08 Online:2024-05-28 Published:2023-09-23
  • Contact: Yuan Quan, Professor, National Demonstration Center for Experimental Mechanical Engineering Education of Shandong University, Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, Shandong Province, China
  • About author:Cui Yiwen, Master candidate, National Demonstration Center for Experimental Mechanical Engineering Education of Shandong University, Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, Shandong Province, China
  • Supported by:
    Shandong Natural Science Foundation Project, No. ZR2020ME143 (to YQ)

摘要:


文题释义:

心脏瓣膜置换:针对瓣膜性心脏病最有效的治疗手段为替换人工瓣膜。机械瓣需要患者终身抗凝治疗,在此期间患者容易发生血栓等并发症。生物瓣膜瓣叶构型是生物瓣膜使用寿命的重要因素,生物瓣膜瓣叶造型取决于生物瓣膜瓣架的设计与加工。
心脏瓣膜瓣架模型设计及分析:基于MRI图像得到患者心脏瓣架和瓣叶的特异性结构特征,然后基于心瓣流体动力学、薄膜壳体理论和几何学完成了抛物瓣型和椭球瓣型瓣架的几何建模,根据空间几何方程构建不同参考型面下的瓣叶及瓣架模型。通过三维建模建立心脏瓣膜瓣架有限元分析的几何模型及双向流固耦合分析,研究瓣架在血液流场中的受力及变形。


背景:当前心脏瓣膜手术所用的人工瓣膜有生物瓣膜和机械瓣膜,生物瓣膜瓣架的设计与加工决定了生物瓣膜的造型,从而决定了生物瓣膜的使用寿命。

目的:根据空间几何方程构建出不同的瓣叶及瓣架模型,通过对比不同瓣叶及瓣架的变形及应力分布情况,获得一种较为合理的瓣架模型,再通过3D打印技术得到实体模型。
方法:根据心脏瓣叶和瓣架的几何模型和数学模型绘制出抛物与椭圆2种心脏瓣架模型,用三维建模对心脏瓣膜瓣架建模,通过双向流固耦合分析研究瓣架在血液流场中的受力及变形。选择心脏瓣膜支架的打印方式和合适的打印材料,实现心脏瓣膜瓣架的3D打印成型。

结果与结论:抛物瓣架与椭球瓣架的变形、最大主应力和最大剪切应力的分布规律相同,椭球瓣架的变形和所受应力都大于抛物瓣架,最大主应力和最大剪切应力都主要集中在瓣架与瓣叶结合的部分,瓣架的总变形、最大主应力和最大剪切应力都随着瓣架直径的增大而减小。

https://orcid.org/0009-0000-1861-9109(崔艺文)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 心脏瓣膜支架, 双向流固耦合, 3D打印技术, 椭圆瓣架, 抛物瓣架

Abstract: BACKGROUND: Currently, artificial valves used in heart valve operations include biological valves and mechanical valves. The design and processing of the biological valve bracket determine the shape of the biological valves, which in turn determines their service life.
OBJECTIVE: Various lobe and bracket models were created based on the spatial geometric equation. Through a comparison of the deformation and stress distribution of various lobe and bracket models, a more rational bracket model was derived. Subsequently, 3D printing technology was utilized to produce a solid model.
METHODS: According to the geometric and mathematical models of the heart valve leaf and valve bracket, parabolic and ellipsoidal heart valve bracket models were created. Three-dimensional modeling was used to design the heart valve bracket. Two-way fluid-structure coupling analysis was conducted to analyze the force and deformation of the valve bracket in the blood flow field. An appropriate printing method and materials were selected to achieve 3D printing of the heart valve bracket. 
RESULTS AND CONCLUSION: The distribution rules of deformation, maximum principal stress, and maximum shear stress of the parabolic bracket and ellipsoidal bracket are the same. The deformation and stress of the ellipsoidal bracket were greater than those of the parabolic bracket. The distribution law of maximum principal stress and maximum shear stress was mainly concentrated in the joint part of the lobe and bracket. The total deformation, maximum principal stress, and maximum shear stress of the bracket decrease with the increase of the bracket diameter.

Key words: heart valve bracket, bidirectional fluid-structure coupling, 3D printing technology, ellipsoidal bracket, parabolic bracket

中图分类号: