中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (4): 493-499.doi: 10.12307/2022.991

• 骨与关节生物力学 bone and joint biomechanics •    下一篇

准静态压缩下腰椎间盘破裂的力学行为

刘  清1,2,宋  浩1,2,都承斐1,2,孙艳芳1,2,李  琨3,张春秋1,2   

  1. 1天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津市   300384;2机电工程国家级实验教学示范中心(天津理工大学),天津市   300384;3天津理工大学薄膜电子和通信设备重点实验室,天津市   300384
  • 收稿日期:2021-12-09 接受日期:2022-01-30 出版日期:2023-02-08 发布日期:2022-06-21
  • 通讯作者: 李琨,博士,副教授,天津理工大学薄膜电子和通信设备重点实验室,天津市 300384 张春秋,博士,教授,天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津市 300384;机电工程国家级实验教学示范中心(天津理工大学),天津市 300384
  • 作者简介:刘清,女,1982年生,2011年天津大学毕业,博士,副教授,主要从事生物力学方向的研究。
  • 基金资助:
    国家自然科学基金(11802207),项目负责人:刘清

Mechanical behavior of lumbar disc rupture under quasi-static compression

Liu Qing1, 2, Song Hao1, 2, Du Chengfei1, 2, Sun Yanfang1, 2, Li Kun3, Zhang Chunqiu1, 2   

  1. 1Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China; 2National Experimental Teaching Demonstration Center for Electromechanical Engineering (Tianjin University of Technology), Tianjin 300384, China; 3Key Laboratory of Thin Film Electronics and Communication Equipment, Tianjin University of Technology, Tianjin 300384, China
  • Received:2021-12-09 Accepted:2022-01-30 Online:2023-02-08 Published:2022-06-21
  • Contact: Li Kun, MD, Associate professor, Key Laboratory of Thin Film Electronics and Communication Equipment, Tianjin University of Technology, Tianjin 300384, China Zhang Chunqiu, MD, Professor, Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China; National Experimental Teaching Demonstration Center for Electromechanical Engineering (Tianjin University of Technology), Tianjin 300384, China
  • About author:Liu Qing, MD, Associate professor, Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China; National Experimental Teaching Demonstration Center for Electromechanical Engineering (Tianjin University of Technology), Tianjin 300384, China
  • Supported by:
    the National Natural Science Foundation of China, No. 11802207 (to LQ)

摘要:

文题释义:
本构模型:反映材料应力应变宏观性质的数学模型。用于描述材料受到外力作用变形时,应力、应变、时间或更多其他物理量变化率之间关系的物性方程,能反映材料属性随运动条件而发生的改变。
损伤因子:用来描述材料损伤程度的物理量,被用于反映材料由于微损伤的产生和损伤扩大而引起的微裂纹和微型孔在全部材料体积中所占比例。
数字图像相关技术:是一种非接触式的测量方法,基于计算机视觉技术跟踪物体表面图像子区域的散斑图,对比物体表面变形前后的2幅数字图像,并运用相关算法得到位移和应变图。

背景:腰椎间盘突出症是临床上引起腰痛的主要原因,发病原因十分复杂,长期力学负荷的积累和突然超负荷损伤通常被认为是主要病因。椎间盘突出大多受到其力学状态改变的影响,因此需要对腰椎间盘整体和内部的应力/应变特性进行研究,从而为腰椎间盘突出的预防和治疗提出指导。
目的:通过体外实验多角度讨论椎间盘的疲劳特性和破裂机制。
方法:实验采用当地屠宰4-6 h的新鲜绵羊腰椎,用其制作的椎间盘样本被用于不同实验。疲劳实验中,探索轻度破裂和疲劳应力对椎间盘疲劳特性的影响。在内部位移和载荷分布实验中,通过应用优化的数字图像相关技术来测试椎间盘加载过程的内部位移分布,应用布拉格光纤光栅技术测量椎间盘加载过程的内部载荷分布。
结果与结论:①对于正常及早期破裂腰椎间盘,疲劳前后的破裂应力-应变曲线均呈现出多段特性,主要由4个阶段组成:趾部阶段、线性阶段、屈服阶段和破裂阶段;②正常腰椎间盘的趾部阶段非常明显,而早期破裂腰椎间盘的趾部阶段几乎消失;对于正常和早期破裂腰椎间盘,疲劳后的弹性模量均略大于疲劳前的弹性模量;对于正常腰椎间盘,疲劳后的比例极限大于疲劳前;对于早期破裂腰椎间盘,疲劳后的比例极限小于疲劳前;对于正常腰椎间盘,疲劳后的屈服应力大于疲劳前;对于早期破裂腰椎间盘,疲劳后的屈服应力小于疲劳前;③腹侧纤维环应力<背侧纤维环应力;在背侧区域,外层纤维环应力<内层纤维环应力;而腹侧区域呈现相反规律;④含损伤因子的损伤本构模型可以很好地拟合椎间盘损伤的力学特性,实验结果对预防日常生活中的腰椎间盘突出具有理论上的指导意义。

https://orcid.org/0000-0001-5629-7091 (刘清) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 腰椎间盘破裂, 本构模型, 应力, 应变, 疲劳损伤

Abstract: BACKGROUND: Lumbar disc herniation is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is very complex, and the accumulation of long-term mechanical loads and sudden overload injuries are usually considered as the main etiological factors. Most herniated discs are affected by alterations in their mechanical state. Therefore, the stress/strain characteristics of the lumbar disc as a whole and internally need to be studied to suggest guidelines for the prevention and treatment of lumbar disc herniation.
OBJECTIVE: To evaluate the fatigue characteristics and rupture mechanism of the intervertebral disc from multiple angles by in vitro experiments.
METHODS: Lumbar spines of fresh sheep slaughtered within 4-6 hours were used in the experiment, and the intervertebral disc samples made up of them were used in different experiments. In the fatigue experiments, the fatigue characteristics of mild rupture and healthy intervertebral disc were explored. In the internal displacement and load distribution experiment, the optimized digital image correlation technique is used to test the internal displacement distribution of the intervertebral disc during the loading process. Fiber Bragg grating technology was used to measure the internal load distribution of the intervertebral disc during the loading process.
RESULTS AND CONCLUSION: (1) For normal and early ruptured lumbar discs, before and after fatigue, all rupture stress-strain curves showed multi-stage characteristics consisting of four main stages: toe stage, linear stage, yielding stage and damage stage. (2) The toe region of normal lumbar discs was very obvious, while the toe region of early ruptured lumbar discs almost disappeared. For both normal and early ruptured lumbar discs, the post-fatigue elastic modulus was slightly greater than the pre-fatigue elastic modulus. For normal lumbar discs, the proportional limit after fatigue was greater than that before fatigue. For early ruptured lumbar discs, the proportional limit after fatigue was less than that before fatigue. For normal lumbar discs, the yield stress after fatigue was greater than before fatigue. For early ruptured lumbar discs, the yield stress after fatigue was less than before fatigue. (3) Ventral annulus fibrosus stress was less than dorsal annulus fibrosus stress. On the dorsal side, the outer annulus fibrosus stress was less than the inner annulus fibrosus stress; while the ventral side showed the opposite pattern. (4) The introduction of damage factors to establish the damage constitutive model can fit the mechanical properties of disc injury well. The experimental results have the theoretical guidance for the prevention of lumbar disc herniation in daily life. 

Key words: lumbar disc rupture, constitutive model, stress, strain, fatigue injury

中图分类号: