中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (36): 5824-5829.doi: 10.3969/j.issn.2095-4344.1994

• 脊柱植入物 spinal implant • 上一篇    下一篇

基于3D打印技术的个性化脊柱侧弯矫形支具数字化设计

张玉芳1,关天民1,郭侨阁2,张玉芬3,郭艳利3   

  1. 1大连交通大学,辽宁省大连市  116000;2郑州市骨科医院影像科,河南省郑州市  450000;3鹤壁市人民医院,河南省鹤壁市  458000
  • 出版日期:2019-12-28 发布日期:2019-12-28
  • 通讯作者: 关天民,博士,教授,博士生导师,大连交通大学,辽宁省大连市 116000
  • 作者简介:张玉芳,女,1990年生,河南省鹤壁市人,汉族,大连交通大学在读博士,主要从事医疗器械的设计研究。

Digital design of personalized scoliosis orthopedic braces based on 3D printing technology

Zhang Yufang1, Guan Tianmin1, Guo Qiaoge2, Zhang Yufen3, Guo Yanli3
  

  1. 1Dalian Jiaotong University, Dalian 116000, Liaoning Province, China; 2Department of Imaging, Zhengzhou Orthopaedic Hospital, Zhengzhou 450000, Henan Province, China; 3The People’s Hospital of Hebi, Hebi 458000, Henan Province, China
  • Online:2019-12-28 Published:2019-12-28
  • Contact: Guan Tianmin, PhD, Professor, Doctoral supervisor, Dalian Jiaotong University, Dalian 116000, Liaoning Province, China
  • About author:Zhang Yufang, Doctoral candidate, Dalian Jiaotong University, Dalian 116000, Liaoning Province, China

摘要:

文章快速阅读:
 
  
文题释义:
躯干有限元模型:通过获取患者胸腰段CT或MRI数据,运用医学图像处理软件对骨骼进行三维建模。利用三维扫描仪获取患者体表点云数据,然后进行处理进而构建患者体表三维模型。接着将骨骼及体表三维模型拟合,且进行有限元单元网格化,在有限元软件中构建肌肉模型,赋予材料属性为后续仿真提供相应生物力学计算模型。
熔融沉积建模技术:采用热熔喷头,使半流动状态的材料按计算机辅助设计分层数据控制的路径挤压并沉积在指定的位置凝固成型,逐层沉积、凝固后形成整个原型或零件。3D打印的支具能够实现结构优化,节省材料,增加透气性,提高患者穿戴的满意度。
 
摘要
背景:传统脊柱支具的设计制作具有贴合性差、加工周期长等缺点;采用计算机辅助设计及3D打印脊柱支具具有个性化、矫正位置准确、设计制作时间短等优势。
目的:将计算机辅助工程、生物力学分析和熔融沉积建模技术相结合,提出一种3D打印制作脊柱支具的可行性方案。
方法:构建1例完全基于人体解剖学特发性脊柱侧凸患者的有限元模型,基于患者体廓信息及三点受力原理,参数化设计支具模型且对其生物力学性能分析。患者对试验方案知情同意,且得到医院伦理委员会批准。对支具进行有限元结构的优化分析获得结构最佳支具模型,并利用3D打印技术将其打印,最后对患者进行穿戴满意度评价。
结果与结论:①对穿戴支具的生物力学性能进行有限元分析预测其矫正效果,对患者胸、腰侧弯位置分别施加10组不同大小的束紧力,患者胸腰椎侧弯最大矫正率达78%和82%;②设置10组优化参数,对支具进行拓扑优化分析,依据结果对支具进行适当的减材处理,再将模型传输到3D打印机快速打印支具;③患者穿戴支具的评价反馈结果显示,采用数字化设计的脊柱支具与患者贴合性较好,具有较高的矫正率;④提示所提出的利用3D打印制作脊柱支具的方案具有可行性,可为后续3D打印支具在临床中的大量应用提供参考。


ORCID: 0000-0002-7177-6186(张玉芳)

关键词: 脊柱侧凸支具, 3D打印, 拓扑优化, 青少年特发性脊柱侧凸, 熔融沉积建模技术, 计算机辅助工程, 个性化支具, 生物力学

Abstract:

BACKGROUND: The design and manufacture of traditional spinal brace have the disadvantages of poor fit and long processing cycle. The use of computer-aided design and 3D printing of the spinal brace has the advantages of individualization, accurate correction position and short design time.
OBJECTIVE: This study combines computer aided engineering, biomechanical analysis and fused deposition modeling technology to propose a feasible scheme of 3D printing for spine brace.
METHODS: A finite element model of an adolescent idiopathic scoliosis patient based on human anatomy was constructed in volunteers with idiopathic scoliosis. Based on patient profile information and three-point stress principle, brace model was parameterized and its biomechanical properties were analyzed. The patient signed the informed consent. This study was approved by the Hospital Ethics Committee. The brace was optimized by finite element analysis to obtain the optimal brace model. The brace model was printed by 3D printing technology. Finally, the wearing evaluation of patients was carried out.
RESULTS AND CONCLUSION: (1) The biomechanical properties of wearing brace were analyzed by finite element method to predict its corrective effect. Ten groups of different sizes of tightening force were applied to the position of thoracic and lumbar scoliosis. The maximum correction rates of thoracic and lumbar scoliosis were 78% and 82%, respectively. (2) Topology optimization analysis of brace was carried out by setting 10 groups of optimization parameters. According to the results, the brace was reduced properly, and then the model was transferred to a 3D printer to print the brace quickly. (3) The patient wore brace and gave feedback. According to the feedback of evaluation, the spine brace designed digitally is more suitable for patients and has higher correction rate. (4) The scheme of making spine brace by using 3D printing is feasible, and it can provide reference for the follow-up application of 3D printing brace in clinical rehabilitation.

Key words: scoliosis brace, 3D printing, topology optimization, adolescent idiopathic scoliosis, molten deposition modeling technology, computer-aided engineering, personalized brace, biomechanics

中图分类号: