中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (37): 6010-6016.doi: 10.3969/j.issn.2095-4344.2015.37.020
• 组织构建基础实验 basic experiments in tissue construction • 上一篇 下一篇
姚中凯,吴作培,孙贵新
出版日期:
2015-09-10
发布日期:
2015-09-10
通讯作者:
孙贵新,博士,主任医师,硕士生导师,上海同济大学附属东方医院创伤外科,上海市 200120
作者简介:
姚中凯,男,1987年生,山东菏泽曹县人,汉族,上海同济大学在读硕士,主要从事创伤外科方面的研究。
基金资助:
上海市卫生局面上项目资助计划项目(20124328);上海市周围神经显微外科重点实验室课题项目(08D22270600)
Yao Zhong-kai, Wu Zuo-pei, Sun Gui-xin
Online:
2015-09-10
Published:
2015-09-10
Contact:
Sun Gui-xin, M.D, Chief physician, Master’s supervisor, Department of Traumatology, East Hospital of Tongji University, Shanghai 200120, China
About author:
Yao Zhong-kai, Studying for master’s degree, Department of Traumatology, East Hospital of Tongji University, Shanghai 200120, China
Supported by:
the Funded Project of Shanghai Health Department, No. 20124328; the Project of Shanghai Key Laboratory of Peripheral Nerve Microsurgery, No. 08D22270600
摘要:
背景:微管相关蛋白2是一种调节微管蛋白组成的重要调节因子,为微管相关蛋白的主要成员之一,在神经系统的发生及功能的维持上起着重要的作用,研究发现微管相关蛋白2能够促进神经损伤的修复与重建。
目的:探讨总结微管相关蛋白2与神经损伤的关系及发挥作用的机制。
方法:由第一作者运用计算机检索系统检索自1976年1月至2015年1月所有发表的与微管相关蛋白2的相关的文献,以“microtubule-associated protein-2(MAP-2),nerve injury,progress”为检索词在同一领域选择近期发表或发表在权威杂志上的文章。排除重复性的文献及时间跨度比较长的文献,从检索结果中共选择了82篇文章进一步的分析。
结果与结论:微管相关蛋白2主要存在于中枢神经系统神经元胞体和树突中。微管相关蛋白2参与神经损伤的修复过程,对神经元形态学和可塑性方面其促进作用。在神经损伤早期提升微管相关蛋白2的浓度可早期恢复神经元的功能。
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
姚中凯,吴作培,孙贵新. 微管相关蛋白2:调节神经元发育、结构稳定及突起形成和突触可塑性[J]. 中国组织工程研究, 2015, 19(37): 6010-6016.
Yao Zhong-kai, Wu Zuo-pei, Sun Gui-xin. Microtubule-associated protein-2: regulating neuronal development, structural stability, projection formation and synaptic plasticity[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(37): 6010-6016.
[1] Ainsztein AM, Purich DL.Stimulation of tubulin polymerization by MAP-2.Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region. J Biol Chem.1994.269(45):28465-28471. [2] Panda D, Goode BL, Feinstein SC,et al. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule- binding domains of tau. Biochemistry. 1995;34(35):17-27. [3] Sloboda RD, Dentler VT, Rosenbaum JL. Microtubule- associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry.1976;15(20):4497-4505. [4] Shafrt-Zagardo B, Kalcheva N. Making sense of the multiple MAP-2 transcripts and their role in the neuron.Mol Neurobiol. 1998;16(2):149-162. [5] Neve RL, Hams P, Kosik KS, et al.Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule- associated protein 2. Brain Res.1986 387:271-280. [6] Shafit-Zagardo B, Rockwood J, Davies P, et al. Novel microtubule-associated protein - 2 isoform is expressed early in human oligodendrocyte maturation. Glia.2000;29 (3 ): 233-245. [7] Huber G,Matus A.Differences in the cellular distributions of two microtubule-associated proteins ,MAP1 and MAP-2,in rat brain J Neurosci.1984;4(1):151-160. [8] Turker RP,Binder LI,Viereck C,et al.The sequential appearance of low and high-molecular weight farms of MAP-2 in the developing cerebellum. J Neurosci. 1988;8(12):A503-512. [9] Kindler S,Schulz B,Goedert M,et al.Molecular structure of microtubule-associated protein 2b and 2c from rat brain) Biol Chem. 1990;265(32):19679-19684. [10] Lewis SA,Wang DH,Cowan NJ.Microtubule-associated protein 2MAP2 shares a microtubule binding motif with tau protein. Science. 1988;242, 936-939. [11] Papandrikopoulou A, Doll T, Turker RP,et al.Embryonic MAP-2 lacks the crossing-linking sidearm sequences and dendritic targeting singnal of adult MAP-2.Nature.1989;340 :639-645. [12] Doll T,Meichsner M,Riederer BM,et al. An isoform of microtubule- associated protein 2 (MAP-2) containing four repeats of the tubulin-binding motif. J Cell Sci. 1993; 106(Pt 2):633-639. [13] Ferhat L, Bernard A, Ribasd PL,et al. regional and developmental expression of rat MAP-2d, a MAP-2 splice variant ncoding four microtubule-binding domains.Neurochem Int. 1994;25(4):327-338. [14] Fenralli J, Doll T, Matus A. Sequence analysis of MAP-2 function in living cells.J Cell Sci. 1994; 107(Pt 11):3115-3125. [15] Obar RA, Dingus J, Bayley H,et al. The RU subunit of CAMP-dependent protein kinase binds to a common amino-terminal domain in microtubule-associated proteins 2A,2B, and 2C Neuron. 1989;3(5):639-645. [16] Rubino HM,Dammerman M,Shafit-Zagardo B,et al. Localization and characterization of the binding site for the regulatory subunit of type Ⅱ cAMP-dependent protein kinase on MAP-2. Neuron.1989;3(5):631-638. [17] Kalcheva N,Weidenheim KM,Kress Y,et al. Expression of microtubule-associated protein-2a and other novel microtubule-associated protein-2 transcripts in human fetal spinal cord. J Neuruchem.1997;68(1)383-391. [18] Kindler S, Garner CC.Four repeat MAP-2 isoforms in* and rat brain. Brain Res Mol Brain Res. 1994;26(1-2):218-224. [19] Garner CC, Matus A.Different forms of microtubule- associated protein 2 are encoded by separate mRNA transcripts. J Cell Biol.1988; 106(3):779-83 [20] Viereck C, Tucker RP, Matus A.The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain J Neurosci.1989;9(10):354-357. [21] Caceres A, Payne MR, Binder LI,et al.Immunocytochemical localization of actin and microtubule-associatedactin protein MAP2 in dendritic spines.Proc Natl Acad Sci USA. 1983;80(6): 1738-1742. [22] Langnaese K, Seidenbecher C, Wex H, et al. Protein components of a rat brain synaptic junctional protein preparation. Brain Res Mol Brain Res.1996;42(1):118-122. [23] Papasozomenos SC, Binder LI, Bender PK,et al. Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta,beta'-iminodipropionitrile-treated axons.J Cell Biol.1985; 100(1):74-85. [24] Meichsner M, Doll T, Reddy D,et al. The low molecular weight form of microtubule-associated protein 2 is transported into both axons and dendrites. Neuroscience. 1993;54(4): 873-880. [25] Sharma N, Kress Y, Shaftt ZB. Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neuritis of rat cortical neurons. Cell Motil Cytoskeleton.1994;27(3):234-247. [26] Boucher M, Belanger D, Beaulieu C,et al. Tau-mediated process outgrowth is differentially altered by the expression of MAP2b and MAP2c in Sf9 cells. Cell Motil Cytoskeleton. 1999;42(4):257-73. [27] Huang YA, Kao JW, Tseng DT, et al. Microtubule-Associated Type II Protein Kinase A Is Important for Neurite Elongation. PloS one.2013;8(8): e73890. [28] Woolf NJ, Zinnerman MD, Johnson GV.Hippocampal microtubule-associated protein-2 alterations with contextual memory.Brain Res.1999;821(1):241-249. [29] Serrano L, Avila J, Maccioni RB, Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry.1984;23:4675-4681. [30] Cross D, Dominguez J, Maccioni RB,et al. MAP-1 and MAP-2 binding sites at the C-terminus of beta-tubuhn. Biochemistry 1991;15:133-168. [31] Saoudi Y, Paintrand I, Multigner L,et al. Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins. J Cell Sci. 1995;108 Pt 1):357-367. [32] Al-Bassam J, Ozer RS, Safer D,et al. MAP-2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol.2002;157(7):1187-1196. [33] Ichihara K, Kitazawa H, Iguchi Y,et al. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP-2).J Mol Biol. 2001;312(1):107-118. [34] Vandecandelaere A, Pedrotti B, Utton MA,et al. Differences in the regulation of microtubule dynamics by microtubule- associated proteins MATIB and MAP-2. Cell Motil Cytoskeleton.1996;35(2):134-146. [35] Pryer NK, Walker RA, Skeen VP,et al.Brain microtubule- associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. J Cell Sci.1992; 103 ( Pt 4):965-76. [36] Wang U, Colella R, Roisen FJ. Ganglioside GM 1 alters neuronal morphology by modulating the association of MAP-2 with microtubules and actin filaments.Brain Res Dev Brain Res. 1998;105(2):227-239. [37] Correas I, Padilla R, Avila J. The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding.Biochem 1990;269(1): 61-64. [38] Kwei SL, Clement A, Faissner A,et al. Differential interactions of MAP-2, tau and MAP5 during axogenesis in culture. Neuroreport.1998; 9(6):1035-1040. [39] Heimann R, Shelanski ML, Liem RK.Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein. J Biol Chem.1985;260(22):12160-12166. [40] Teng J, Takei Y, Harada A, et al. Synergistic effects of MAP-2 and MAPIB knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol. 2001; 155(1):65-76. [41] Chakravarthy B, Rashid A, Brown L, et al. Association of Gap-43 (neuromodulin) with microtubule-associated protein MAP-2 in neuronal cells. Biochemical and biophysical research communications.2008;371(4): 679-683. [42] Ferhat L, Represa A, Bernard A, et al. MAP2d promotes bundling and stabilization of both microtubules and microfilaments. J Cell Sci.1996;109:1095-1103. [43] Ludin B, Ashbridge K, Funfschilling U,et al.Functional analysis of the MAP-2 repeat domain. J Cell Sci. 1996;109 (Pt 1): 91-99. [44] Mandelkow E,Hoenger A.Structures of kinesin and kinesin- microtubule-microtubule interactions.Curr Opin Cell Biol. 1999;11(1):34-44. [45] Hagiwara H, Yorifuji H, Sato YR,et al. Competition between motor molecules (kinesin and cytoplasmic dynein) and fibrous microtubule-associated proteins in binding to microtubules. J Biol Chem. 1994;269(5):3581-3589. [46] Lopez LA, Sheetz MP.Steric inhibition of cytoplasmic dynein and kinesin motility by MAP-2. Cell Motil Cytoskeleton. 1993; 24(1):1-16. [47] Ulitzur N, Humbert M, Pfeffer SR. Mapmodulin: a possible modulator of the interaction of microtubule-associated proteins with microtubules. Proc Natl Acad Sci USA. 1997; 94(10):5084-5089. [48] Tsuyama S,Terayama Y,Matsuyama S.Numerous phosphates of microtubule-associated protein 2 in living rat brain .J Biol Chem.1987;262(22):10886-10892. [49] Diez-Guerra FJ, Avila JJ. MAP-2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport. 1993;4(4):419-422. [50] Diaz-Nido J, Montoro RJ, Lopez-Bameo J,et al. High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP-2 in rat hippocampal slices. Eur J Neurosci.1993;5(7):818-824. [51] Matsuno A, Takekoshi S, Sanno N, et al. Modulation of protein kinases and microtubule-associated proteins and changes in ultrastructure in,female rat pituitary cells: effects of estrogen and bromocriptine.J Histochem Cytochem.1997;45(6):805-813. [52] Brugg B, Matus A.Phosphorylation determines the binding of microtubule- associated protein 2 (MAP-2) to microtubules in living cells.J Cell Biol.1991;114: 735-743 [53] Springer J, Azbill RD, Kennedy S,et al.Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riiuzole pretreatment. J Neurochem. 1997;69(4):1592-1600. [54] Maddodi N, Bhat KM, Devi S, et al. Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. J Biol Chem. 2010;285(1): 242-254. [55] Liu Y, Sturgis CD, Grzybicki DM,et al. Microtubule-associated protein-2: a new sensitive and specific marker for pulmonary carcinoid tumor and small cell carcinoma.Mod Pathol. 2001; 14(9):880-885. [56] Surridge CD,Burns RG. The difference in the binding of phosphatidylinositol distinguishes MAP-2 from MAP-2C and Tau.Biochemistry.1994;33(26):8051-8057. [57] Scaife RM, Wilson L, Purich DL. Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization.Biochemistry. 1992;31(1):310-316. [58] Fang D, Hallman J, Sangha N,et al. Expression of microtubule-associated protein 2 in benign and malignant melanocytes: implications for differentiation and progression of cutaneous melanoma. Am J Pathol.2001; 158(6):2107-2115. [59] Song Z, He C D, Sun C, et al.Increased expression of MAP2 inhibits melanoma cell proliferation, invasion and tumor growth in vitro and in vivo[J]. Experimental dermatology. 2010;19(11): 958-964. [60] Dinsmore JH, Solomon Y. Inhibition of MAP 2 expression affects both morphological and cell division phenotypes of neuronal differentiation.Cell.1991;64(4) :817-826. [61] Cheu J, Kauai Y, Cowau NJ, et al.Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons.Nature.1992;360(6405):674-677. [62] NunezJ. Immature and mature variants of MAP2 and tan proreins and neuronal plasticity. Trends Neurosci. 1988;11 (11) : 477-479. [63] Folkerts MM,Bermau RF, Muizelaar JY, et al. Disruption of MAP-2 immunostaining in rat hippocampus after traumatic brain injury. J Neurotrauma. 1998;15(5):349-363. [64] Holgado A, Ferreira A. Synapse formation proceeds independently of dendritic elongation in cultured hippocampal neurons. J Neurobiol.2000;43(2): 121-131. [65] Sanchez Martin C, Ledesma D, Dotti CG ,et al. Microtubule - associated protein - 2 located in growth regions of rat hippocampal neurons is highly phosphorylated at its proline - rich region. Neuroscience.2000;101(4):885-893. [66] Waterman-Storer CM, Salmon E. Positivefeedback interactions between microtubule and actin dynamics during cell motility. Curr Opin Cell Biol.1999; 11(1):61-67. [67] Beltramino CA. Timed changes of synaptic zinc, synaptophysin and MAP< sub> 2</sub> in medial extended amygdala of epileptic animals are suggestive of reactive neuroplasticity. Brain research.2010;1328: 130-138. [68] Tang L,Lu Y, Zheng W, et al. Overexpression of MAP-2 via Formation of Microtubules Plays an Important Role in the Sprouting of Mossy Fibers in Epileptic Rats. J Mol Neurosci. 2014; 53(1):103-108. [69] Guo Y, Sanchez C, Udin SB. MAP2 phosphorylation and visual plasticity in Xenopus. Brain Res, 2001;905 (1-2) :134-141. [70] Song ZM , Undie AS, Koh PO ,et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci. 2002;22(14): 6092-6105. [71] Terabayashi T, Itoh TJ, Yamaguchi H,et al.Polarity-regulating kinase partitioning-defective 1/microtubule affinity-regulating kinase 2 negatively regulates development of dendrites on hippocampal neurons. J Neurosci..2007; 27(48): 13098-13107. [72] Hayashi K, Kawai - Hirai R, Ishikawa K, et al. Reversal of neuronal polarity characterized by conversion of dendrites into axons in neonatal rat cortical neurons in vitro. Neuroscience. 2002; 110(1):7-17. [73] Tatebayashi Y, Lee MH, Li L ,et al. The dentate gyrus neurogenesis: a therapeutic target for Alzheimer’s disease. Acta Neuropathol Ber.2003;105 (3) :225-232. [74] Yamanouchi H, Jay V , Otsubo H , et al. Early forms of microtubule - associated protein are strongly expressed in cortical dysplasia. Acta Neuropathol.1998;95 (5 ):466-470. [75] Choudhary S,Joshi K,Gill KD.Possible role of enhanced microtubule phosphorylation in dichlorvos induced delayed neurotoxicity in rat.Brain Res.2001;897(1-2 ):60-70. [76] Hatakeyama T, Matsmmto M,Brengman JM,et al. Immurmhistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils.Stroke.1988;19(12):1526-1534. [77] Pettigrew LC, Holtz ML, Cradbock SP, et al. Microtubular proteolysis in focal cerebral ischemia.J Cereb Blood Flow Metab.1996;16(6):1189-1202. [78] Kitagawa K, Matsumoto M, Niinobe M, et al. Microtubule- associated protein -2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage. Neuroscience.1989; 31 (2):401-411. [79] Kaech S, Parmar H, Roelandse M, et al. Cytoskeletal microdiffer2entiation: a mechanism for organizing morphological plasticity in dendrites. Proc Natl Acad Sci USA.2001;98(13): 7086-7092. [80] Monshausen M, Putz U, Rehbein M, et al.Two rat brain staufen isoforms differentially bind RNA J Neurochem. 2001; 76( 1 ):155-165. [81] Burtelow MA, Longacre TA. Utility of microtubule associated protein-2 (MAP-2) immunohistochemistry for identification of ganglion cells in paraffin-embedded rectal suction biopsies. Am J Surg Pathol. 2009;33(7):1025-1030. [82] Iwata M,Muneoka KT,Shirayama Y,et al.A study of a dendritic marker, microtubule-associated protein 2 (MAP-2), in rats neonatally treated neurosteroids, pregnenolone and dehydroepiandrosterone (DHEA). Neuroscience letters.2005; 386(3):145-149. |
[1] | 姜 勇, 罗 翼, 丁永利, 周 勇, 闵 理, 唐 凡, 张闻力, 段 宏, 屠重棋. 骶骨精准切除影响骨盆稳定性的冯米斯应力特征及临床验证[J]. 中国组织工程研究, 2021, 25(9): 1318-1323. |
[2] | 张同同, 王中华, 文 杰, 宋玉鑫, 刘 林. 3D打印模型在颈椎肿瘤手术切除与重建中的应用[J]. 中国组织工程研究, 2021, 25(9): 1335-1339. |
[3] | 张秀梅, 翟运开, 赵 杰, 赵 萌. 类器官模型国内外数据库近10年文献研究热点分析[J]. 中国组织工程研究, 2021, 25(8): 1249-1255. |
[4] | 顾 霞, 赵 敏, 王平义, 李一梅, 李文华. 低氧诱导因子1α与低氧相关疾病信号通路的关系[J]. 中国组织工程研究, 2021, 25(8): 1284-1289. |
[5] | 朱雪芬, 黄 成, 丁 健, 戴永平, 刘元兵, 乐礼祥, 王亮亮, 杨建东. 胶质细胞神经营养因子诱导骨髓间充质干细胞向功能性神经元分化的机制[J]. 中国组织工程研究, 2021, 25(7): 1019-1025. |
[6] | 王 丰, 周立宇, 赛吉拉夫, 齐士斌, 马艳霞, 韦善文. CaMKⅡ-Smad1促进外周神经的轴突再生[J]. 中国组织工程研究, 2021, 25(7): 1064-1068. |
[7] | 赵 敏, 冯柳祥, 陈 垚, 顾 霞, 王平义, 李一梅, 李文华. 低氧环境下外泌体可作为疾病的标志物[J]. 中国组织工程研究, 2021, 25(7): 1104-1108. |
[8] | 谢文佳, 夏天娇, 周卿云, 刘羽佳, 顾小萍. 小胶质细胞介导神经元损伤在神经退行性疾病中的作用[J]. 中国组织工程研究, 2021, 25(7): 1109-1115. |
[9] | 焦 慧, 张一宁, 宋雨晴, 林 宇, 王秀丽. 乳腺癌类器官研究进展及临床应用前景[J]. 中国组织工程研究, 2021, 25(7): 1122-1128. |
[10] | 曾燕华, 郝延磊. 许旺细胞体外培养及纯化的系统性综述[J]. 中国组织工程研究, 2021, 25(7): 1135-1141. |
[11] | 谢 阳, 张淑江, 刘梦兰, 罗 映, 杨 洋, 李作孝. 雷帕霉素保护实验性自身免疫性脑脊髓炎小鼠脊髓神经元的作用途径[J]. 中国组织工程研究, 2021, 25(5): 695-700. |
[12] | 徐东紫, 张 婷, 欧阳昭连. 心脏组织工程领域全球专利竞争态势分析[J]. 中国组织工程研究, 2021, 25(5): 807-812. |
[13] | 吴子健, 胡昭端, 谢有琼, 王 峰, 李 佳, 李柏村, 蔡国伟, 彭 锐. 3D打印技术与骨组织工程研究文献计量及研究热点可视化分析[J]. 中国组织工程研究, 2021, 25(4): 564-569. |
[14] | 常文辽, 赵 杰, 孙晓亮, 王 锟, 吴国锋, 周 剑, 李树祥, 孙 晗. 人工骨膜的材料选择、理论设计及生物仿生功能[J]. 中国组织工程研究, 2021, 25(4): 600-606. |
[15] | 刘 旒, 周箐竹, 龚 桌, 刘博言, 杨 斌, 赵 娴. 胶原/无机材料构建组织工程骨的特点及制造技术[J]. 中国组织工程研究, 2021, 25(4): 607-613. |
1.1 资料来源 由第一作者运用计算机检索系统检索1976年1月至2015年1月在PubMed和CNKI发表的相关文献,以“microtubule-associated protein-2,nerve injury,progress”为检索词进行检索,语言设定为英文,经过筛查,从中选取82篇相关的文献。
1.2 检索方法
纳入标准:①文献的内容与微管相关蛋白、神经元的损伤密切相符。②可靠性较高、引用次数较多的原创文章。③主题层次鲜明的文章。
排除标准:重复性研究,时间跨度较大的文章。
质量评估:符合要求的所有文章中,文献[1-24]主要涉及微管相关蛋白2的结构及分类;文献[24-54]主要描述微管相关蛋白2维持神经元的极性,促进损伤神经元修复的机制;文献[55-82]主要描述微管相关蛋白2的特异性应用及今后的展望。
1 此问题的已知信息:微管相关蛋白2主要分布中枢神经系统神经元胞体和树突中,在神经损伤后,微管相关蛋白2参与到损伤神经元的修复及重建。 2 文章增加的新信息:文章分析了微管相关蛋白2结构及分类,微管相关蛋白2的分布与表达,微管相关蛋白2功能,翻译后的修饰,微管相关蛋白2特异性应用及微管相关蛋白2的基因调控。微管相关蛋白2保持神经元形态学及可塑性,参与修复损伤神经元胞体、树突的分子机制,及其特异性的应用。 3 临床应用的意义:微管相关蛋白应用神经损伤后检测及治疗,也可应用于某些肿瘤的临床筛查。
微管蛋白有两种类型:α微管蛋白(α-tubulin)和β微管蛋白(β-tubulin),这两种微管蛋白具有相似的三维结构,能够紧密地结合成二聚体,作为微管组装的亚基。α亚基由450个氨基酸组成,β亚基是由455个氨基酸组成,它们的相对分子质量约55 000。这两种亚基有35%-40%的氨基酸序列同源,表明编码它们的基因可能是由同一原始祖先演变而来。另外,这两种微管蛋白与细菌中一种叫作FysZ的GTPase(相对分子质量为40000)同源,这种酶具有和微管蛋白相似的功能,能够聚合并且参与细胞分裂。α和β微管蛋白的亚基都是直径为4nm的球形分子,它们组成的异源二聚体的长度为8nm。α和β微管蛋白各有一个GTP结合位点, 位于α亚基上的GTP结合位点,是不可逆的结合位点,结合上去的GTP不能被水解,也不能被GDP替换。位于β亚基上的GTP结合位点结合GTP后能够被水解成GDP,所以这个位点又称为可交换的位点(exchangeable site,E位点)。还有一种微管蛋白,即γ微管蛋白,不是微管的组成成分,但是参与微管的组装。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||