中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (9): 2226-2235.doi: 10.12307/2026.600

• 骨与关节生物力学Bone and joint biomechanics • 上一篇    下一篇

短节段置钉联合可扩张聚醚醚酮置换体在骨质疏松椎体中的生物力学性能

陈  龙1,2,王小阵1,席金涛1,鲁齐林1   

  1. 1武汉中西医结合骨科医院(武汉体育学院附属医院)脊柱外科,湖北省武汉市  430070;2罗斯托克大学医学院,梅克伦堡-前波莫瑞州罗斯托克市,德国  18057
  • 收稿日期:2024-12-23 接受日期:2025-02-26 出版日期:2026-03-28 发布日期:2025-09-05
  • 通讯作者: 鲁齐林,博士,副主任医师,武汉中西医结合骨科医院(武汉体育学院附属医院)脊柱外科,湖北省武汉市 430070
  • 作者简介:陈龙,男,1993年生,湖北省武汉市人,满族,2018年湖北中医药大学,硕士,主治医师,主要从事脊柱外科及骨质疏松症方向的研究。
  • 基金资助:
    湖北省自然科学基金(2023AFB645),项目负责人:鲁齐林;2024年度武汉体育学院附属医院院级课题(WTFY202401),项目负责人:陈龙

Biomechanical performance of short-segment screw fixation combined with expandable polyetheretherketone vertebral body replacement in osteoporotic vertebrae

Chen Long1, 2, Wang Xiaozhen1, Xi Jintao1, Lu Qilin1   

  1. 1Department of Spine Surgery, Wuhan Integrated Traditional Chinese and Western Medicine Hospital (Affiliated Hospital of Wuhan Sports University), Wuhan 430070, Hubei Province, China; 2Medical School, University of Rostock, Mecklenburg-Vorpommern 18057, Germany
  • Received:2024-12-23 Accepted:2025-02-26 Online:2026-03-28 Published:2025-09-05
  • Contact: Lu Qilin, MD, Associate chief physician, Department of Spine Surgery, Wuhan Integrated Traditional Chinese and Western Medicine Hospital (Affiliated Hospital of Wuhan Sports University), Wuhan 430070, Hubei Province, China
  • About author:Chen Long, MS, Attending physician, Department of Spine Surgery, Wuhan Integrated Traditional Chinese and Western Medicine Hospital (Affiliated Hospital of Wuhan Sports University), Wuhan 430070, Hubei Province, China; Medical School, University of Rostock, Mecklenburg-Vorpommern 18057, Germany
  • Supported by:
    Hubei Natural Science Foundation, No. 2023AFB645 (to LQL); 2024 Hospital-level Project Affiliated Hospital of Wuhan Sports University, No. WTFY202401 (to CL)

摘要:

文题释义:

椎体置换:病理性骨折、椎体严重塌陷或伴有神经病变可考虑椎体置换术,手术通过移除受损椎体,置入人工置换体,恢复椎体高度,重建脊柱稳定性。对于骨质疏松患者,置换体需具备良好的生物力学适配性,以减少应力遮挡和骨吸收风险。现代置换体多采用可扩张结构和骨整合优化设计,提高术后融合率,降低移位及翻修风险。此外,影像兼容性佳的材料有助于术后随访、确保长期疗效,是脊柱微创治疗的重要方向。
可扩张聚醚醚酮置换体:其弹性模量接近松质骨,可降低应力遮挡效应。可扩张聚醚醚酮置换体的可扩张设计可原位恢复椎体高度,减少塌陷,优化力学支撑,并降低术后并发症。表面改性(如羟基磷灰石涂层、3D打印微孔结构)可增强骨结合率,提高置入稳定性,减少移位风险。相比金属,聚醚醚酮影像透明性更佳,可减少伪影干扰,便于术后监测。其稳定性提升可减少翻修手术需求,降低医疗成本,提高骨质疏松患者的长期预后。

摘要
背景:椎体置换可以恢复脊柱前柱的稳定性并矫正畸形,但是传统的可扩张钛合金置换体的弹性模量较大、影像学存在伪影等,增加了邻近节段退变的风险。理论上,聚醚醚酮因具有类似于骨的密度、放射透光性及术中适应性,更适合骨质疏松患者,但仍缺乏足够的证据。
目的:应用有限元分析法探讨后路短节段置钉联合新型可扩张聚醚醚酮置换体在骨质疏松椎体中的生物力学性能。 
方法:根据置钉方式及置换体材料的不同,建立4种T12椎体置换有限元模型:模型1,经伤椎的普通椎弓根螺钉联合可扩张钛笼(M1);模型2,经伤椎的普通椎弓根螺钉联合聚醚醚酮置换体(M2);模型3,跨伤椎的骨水泥强化螺钉联合聚醚醚酮置换体(M3);模型4,经伤椎的骨水泥强化螺钉联合聚醚醚酮置换体(M4)。比较分析4组模型在相同边界条件下T11-L1节段的活动范围、内固定系统及邻近节段上下终板的von Mises最大应力。 
结果与结论:①对比M1、M2组,M2组在4种运动状态下的活动范围值较M1组增加,但差异不明显;M2组置换体在4种运动状态下的最大应力值较M1组减小,而且对邻近节段上下终板的最大应力较M1组减小;②对比M2、M3、M4组,M4组固定节段最大活动范围值最低,而且M4组钉棒系统及置换体在4种运动状态下的最大应力值均最小;M3组椎弓根螺钉在4个运动方向的最大应力值明显最高;M4组邻近节段上下终板在4个方向的最大应力值最低,但3组之间无显著差异;③提示在骨质疏松椎体置换过程中,可扩张聚醚醚酮置换体的生物力学性能与可扩张钛合金-置换体类似,甚至在抗置换体压缩及抗下沉方面性能更好;后路短节段置钉联合可扩张聚醚醚酮-置换体均能提供良好的稳定性,但是经伤椎骨水泥强化螺钉的生物力学性能最好,对内固定及上下终板的影响最小。


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 有限元分析, 胸腰椎, 骨质疏松, 椎体置换, 聚醚醚酮, 生物力学

Abstract: BACKGROUND: Vertebral replacement can restore the stability of the anterior column of the spine and correct deformity, but the traditional expandable titanium alloy replacement has a large elastic modulus and imaging artifacts, which increases the risk of adjacent segment degeneration. In theory, polyetheretherketone is more suitable for osteoporotic patients because of its similar density to bone, radiolucency and intraoperative adaptability, but there is still a lack of sufficient evidence.  
OBJECTIVE: To investigate the biomechanical performance of posterior short-segment screw fixation combined with a novel expandable polyetheretherketone vertebral body replacement in osteoporotic vertebrae using finite element analysis.  
METHODS: Four finite element models of T12 vertebral body replacement were developed based on different screw fixation methods and vertebral body replacement materials. Model 1: Conventional pedicle screws through the fractured vertebra combined with an expandable titanium cage (M1). Model 2: Conventional pedicle screws through the fractured vertebra combined with a polyetheretherketone-vertebral body replacement (M2). Model 3: Cement-augmented pedicle screws across the fractured vertebra combined with a polyetheretherketone-vertebral body replacement (M3). Model 4: Cement-augmented pedicle screws through the fractured vertebra combined with a polyetheretherketone-vertebral body replacement (M4). The range of motion, maximum von Mises stress of the fixation system, and adjacent segment endplates in T11-L1 segments were compared among the four models under identical boundary conditions.  
RESULTS AND CONCLUSION: (1) Comparing M1 and M2, the range of motion values of M2 under four motion states were higher than those of M1, but the differences were not significant. The maximum stress on the vertebral body replacement in M2 under the four motion states was reduced compared to M1. Additionally, M2 showed a decrease in the maximum stress on the adjacent segment endplates compared to M1. (2) Among M2, M3, and M4, the fixed segment’s maximum range of motion was lowest in M4. The maximum stresses on the screw-rod system and vertebral body replacement under the four motion states were also lowest in M4. The maximum stress on pedicle screws under four motion directions was significantly highest in M3. For the adjacent segment endplates, M4 had the lowest maximum stress across all directions. However, the differences among the three were not statistically significant. (3) In vertebral body replacement for osteoporotic vertebrae, the biomechanical performance of the expandable polyetheretherketone-vertebral body replacement is similar to that of the expandable expandable titanium cage and may perform better in reducing subsidence. Posterior short-segment screw fixation combined with the expandable polyetheretherketone-vertebral body replacement provides good stability, with cement-augmented pedicle screws through the fractured vertebra demonstrating the best biomechanical performance and the least impact on the fixation system and adjacent endplates.


Key words:  finite element analysis, thoracolumbar spine, osteoporosis, vertebral body replacement, polyetheretherketone, biomechanics

中图分类号: