中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (20): 5321-5330.doi: 10.12307/2026.670

• 生物材料综述 biomaterial review • 上一篇    下一篇

生物材料调控微环境失衡治疗脊髓损伤

王梓桐1,吴子健2,杨傲飞2,毛  田2,方  楠1,王志刚2   

  1. 1湖北中医药大学针灸骨伤学院,湖北省武汉市  430061;2湖北省中医院骨伤一科,湖北省武汉市  430061
  • 接受日期:2025-06-27 出版日期:2026-07-18 发布日期:2025-12-03
  • 通讯作者: 王志刚,主任医师,教授,湖北省中医院骨伤一科,湖北省武汉市 430061
  • 作者简介:王梓桐,男,2001年生,湖北省武汉市人,汉族,湖北中医药大学在读硕士,主要从事中西医结合防治脊髓损伤的研究。 吴子健,男,1992年生,湖北省潜江市人,汉族,博士,主治医师,主要从事中西医结合防治脊髓损伤的研究。
  • 基金资助:
    湖北省科学基金创新发展联合基金项目(2022CFD149),项目负责人:吴子健;湖北省自然科学基金一般面上项目(2024AFB977),项目负责人:杨傲飞

Biomaterials regulate microenvironment imbalance for treating spinal cord injury

Wang Zitong1, Wu Zijian2, Yang Aofei2, Mao Tian2, Fang Nan1, Wang Zhigang2   

  1. 1College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; 2First Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan 430061, Hubei Province, China
  • Accepted:2025-06-27 Online:2026-07-18 Published:2025-12-03
  • Contact: Wang Zhigang, Chief physician, Professor, First Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan 430061, Hubei Province, China
  • About author:Wang Zitong, Master candidate, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China Wu Zijian, MD, Attending physician, First Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan 430061, Hubei Province, China
  • Supported by:
    spinal cord injury; microenvironment; biomaterial; nanotechnology; 3D printing; multifunctional composite material; nerve; nerve regeneration

摘要:

文题释义:
微环境失衡:是脊髓损伤后局部组织稳态的病理状态,表现为炎症因子过度释放、细胞外基质异常降解、离子稳态失调及神经营养因子缺失。微环境失衡的核心机制涉及促炎性M1型小胶质细胞极化、线粒体功能障碍导致的活性氧累积以及星形胶质细胞异常活化形成的致密胶质瘢痕,这些变化对神经修复造成不可忽视的障碍。
脊髓损伤:指由创伤、缺血或病变导致的脊髓结构和功能破坏,主要表现为运动、感觉及自主神经功能障碍。脊髓损伤的病理过程包括原发性机械损伤和继发性级联反应,后者引发进行性组织坏死并形成抑制再生的胶质瘢痕。

背景:近年来,组织工程学生物材料在调节微环境失衡、重建神经传导通路等方面展现出独特优势,为突破脊髓损伤修复瓶颈提供了多样化、创新性的解决方案。
目的:系统阐释脊髓损伤后微环境失衡的核心病理机制及动态演变规律以及生物材料调控微环境失衡修复脊髓损伤的策略。
方法:由第一作者于2025年2月利用计算机在PubMed数据库及中国知网检索各数据库建库至2025年2月发表的相关文献,英文检索词为“spinal cord injuries,biocompatible materials,microenvironment”,中文检索词为“脊髓损伤,生物材料,微环境”。最终纳入65篇文献进行分析。
结果与结论:脊髓损伤后微环境的变化包括出血与缺血、胶质瘢痕形成、炎症反应形成的恶性循环以及神经营养因子缺失,损伤后细胞及分子层面的调控及修复机制仍待进一步研究。目前生物材料的应用策略通过多机制(抗氧化、抗炎、结构支撑、有利因子递送等)有效调控微环境失衡,促进神经再生和功能恢复。现有生物材料在生物相容性、降解速率、机械性能等方面需优化,单一材料难以全面解决复杂病理,未来需考虑多因素综合调控(如联合干细胞/基因疗法),临床转化需加强安全性和疗效验证。
https://orcid.org/0009-0008-2045-3126(王梓桐)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 脊髓损伤, 微环境, 生物材料, 纳米技术, 3D打印, 多功能复合材料, 神经, 神经再生

Abstract: BACKGROUND: In recent years, tissue engineering biomaterials have shown unique advantages in regulating microenvironment imbalance and reconstructing nerve conduction pathways, providing diversified and innovative solutions for breaking through the bottleneck of spinal cord injury repair.
OBJECTIVE: To systematically explain the core pathological mechanism and dynamic evolution of microenvironment imbalance after spinal cord injury and the strategy of biomaterials to regulate microenvironment imbalance and repair spinal cord injury.
METHODS: The first author used a computer in February 2025 to retrieve the relevant literature published from inception to February 2025 on PubMed and CNKI. The English search terms were “spinal cord injuries, biocompatible materials, microenvironment” and the Chinese search terms were “spinal cord injury, biomaterials, microenvironment,” eventually incorporating 65 papers for analysis.
RESULTS AND CONCLUSION: After spinal cord injury, the microenvironment changes include hemorrhage, ischemia, glial scar formation, a persistent inflammatory cycle, and loss of neurotrophic factors. The regulatory and repair mechanisms at cellular and molecular levels after injury still require further investigation. Current biomaterial strategies effectively target microenvironment imbalances through multiple approaches (such as antioxidant/anti-inflammatory effects, structural support, and controlled delivery of therapeutic factors), promoting nerve regeneration and functional recovery. Existing biomaterials need optimization in biocompatibility, degradation rates, and mechanical properties. Single-material systems struggle to address the complexity of spinal cord injury pathology. In the future, multi-target strategies (such as combining stem cell/gene therapies), clinical translation requiring rigorous safety and efficacy validation.

Key words: spinal cord injury, microenvironment, biomaterial, nanotechnology, 3D printing, multifunctional composite material, nerve, nerve regeneration

中图分类号: