[1] WU AM, BISIGNANO C, JAMES SL, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021; 2(9):E580-E92.
[2] KäMMERER PW, AL-NAWAS B. Bone reconstruction of extensive maxillomandibular defects in adults. Periodontol 2000. 2023;93(1):340-357.
[3] BOSE S, AKDOGAN EK, BALLA VK, et al. 3D printing of ceramics: Advantages, challenges, applications, and perspectives. J Am Ceram Soc. 2024;107(12):7879-920.
[4] 胡堃,王峻东,杨桂娟,等.3D打印智能仿生材料研究进展[J].数字印刷,2020(5): 1-15.
[5] GUO W, LI B W, LI P, et al. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds. J Mater Chem B. 2023;11(40): 9572-9596.
[6] KALIDINDI S. The role of three-dimensional (3D) printing in plastic and reconstructive surgery: innovations and applications. Eur J Plast Surg. 2024;47(1):96.
[7] CHEN B, CHEN Q, ZHANG HD, et al. 3D-Printed Dual-Bionic Scaffolds to Promote Osteoconductivity and Angiogenesis for Large Segment Bone Restoration. Adv Funct Mater. 2024;35:2422691.
[8] WHITE E. Biomaterials innovation: it’sa long road to the operating room. Mater Res Innovations. 1997;1(1):57-63.
[9] RAJAGOPALAN S, ROBB RA. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal. 2006;10(5): 693-712.
[10] ZHANG F, CHANG J, LU J, et al. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Acta Biomater. 2007;3(6):896-904.
[11] CLARKE S, WALSH P, MAGGS C, et al. Designs from the deep: Marine organisms for bone tissue engineering. Biotechnol Adv. 2011;29(6):610-617.
[12] RESTREPO S, OCAMPO S, RAMíREZ J, et al. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing. J Phys Conf Ser. 2017; 935:012036.
[13] FENG C, ZHANG W, DENG C, et al. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration. Adv Sci (Weinh). 2017;4(12): 1700401.
[14] ZHANG P, ZHOU Q, HE R. Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential. Materials (Basel). 2024;17(24):6092.
[15] NYBERG EL, FARRIS AL, HUNG B, et al. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration. Ann Biomed Eng. 2017; 45(1):45-57.
[16] MIGLIORINI F, LA PADULA G, TORSIELLO E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1): 1-10.
[17] JIANG XQ. Biomaterials for bone defect repair and bone regeneration.Zhonghua Kou Qiang Yi Xue Za Zhi. 2017;52(10): 600-604.
[18] LIN H, ZHANG LY, ZHANG QY, et al. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci. 2023;11(21): 7034-7050.
[19] DU M, CHEN J, LIU K, et al. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites. Part B. 2021;215:108790.
[20] MA HS, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59.
[21] SHEN C, WANG MM, WITEK L, et al. Transforming the Degradation Rate of β-tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing. Ann Plast Surg. 2021;87(6):e153-e162.
[22] JANG HJ, YOON JK. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics (Basel). 2024; 9(2):75.
[23] SHAHROUZIFAR MR, SALAHINEJAD E, SHARIFI E. Co-incorporation of strontium and fluorine into diopside scaffolds: Bioactivity, biodegradation and cytocompatibility evaluations. Mater Sci Eng C Mater Biol Appl. 2019;103:109752.
[24] 牛建华,易敏,许卫星.3D打印技术制备β-TCP仿生骨支架的形态结构特点及其成骨性能分析[J]. 口腔材料器械杂志,2023, 32(3):183-188.
[25] JEONG J, KIM JH, SHIM JH, et al. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):4.
[26] GUVENDIREN M, MOLDE J, SOARES RMD,
et al. Designing Biomaterials for 3D Printing. ACS Biomater Sci Eng. 2016;2(10):1679-1693.
[27] SAADI M, MAGUIRE A, POTTACKAL NT, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv Mater. 2022;34(28):2108855.
[28] ZHANG YH, ZHANG Q, HE FP, et al. Fabrication of cancellous-bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing. J Eur Ceram Soc. 2022;42(14):6713-6720.
[29] KAMBOJ N, KAZANTSEVA J, RAHMANI R, et al. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;116:1112223.
[30] ZENG H, PATHAK JL, SHI YH, et al. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Biofabrication. 2020;12(2): 025032.
[31] ZHANG F, LI ZA, XU MJ, et al. A review of 3D printed porous ceramics. J Eur Ceram Soc. 2022;42(8):3351-3373.
[32] KE DX, BOSE S. Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing. Addit Manuf. 2018;22:111-117.
[33] KUMAR P, SHAMIM, MUZTABA M, et al. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann Biomed Eng. 2024;52(5):1184-1194.
[34] BRUYAS A, LOU F, STAHL M, et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity. J Mater Res. 2018;33(14):1948-1959.
[35] KOLAN KC, LEU MC, HILMAS GE, et al. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater. 2012;13:14-24.
[36] 刘思达.基于数字化光处理3D打印制备仿生结构磷酸三钙骨组织工程支架及其性能表征[D].北京:北京工业大学,2020.
[37] FENG JW, FU JZ, YAO XH, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022; 4(2):022001.
[38] SHEN MD, LI YF, LU FL, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25: 374-386.
[39] ZHANG Q, MA LM, JI XF, et al. High-Strength Hydroxyapatite Scaffolds with Minimal Surface Macrostructures for Load-Bearing Bone Regeneration. Adv Funct Mater. 2022; 32(33):2204182.
[40] 崔越.3D打印高强度三周期极小曲面羟基磷灰石支架用于骨修复的研究[D].广州:华南理工大学,2021.
[41] 李梦.光固化3D打印仿生生物活性陶瓷骨修复支架研究[D].武汉:武汉理工大学,2022.
[42] LI YF, LI JF, JIANG S, et al. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration. Mater Today Bio. 2023;20:100667.
[43] BOUAKAZ I, DROUET C, GROSSIN D, et al. Hydroxyapatite 3D-printed scaffolds with Gyroid-Triply periodic minimal surface (TPMS) porous structure: Fabrication and an<i> in</i><i> vivo</i> pilot study in sheep. Acta Biomater. 2023;170:580-895.
[44] ZHANG M, LIN R, WANG X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725.
[45] 屈华伟.挤出式3D打印仿生梯度组织工程支架的设计与制备研究[D].哈尔滨:哈尔滨工业大学,2022.
[46] 徐丹蕾.磷酸钙生物活性陶瓷微尺度调控与骨修复性能研究[D].广州:华南理工大学,2023.
[47] TANG YF, ZHAO K, HU L, et al. Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram Int. 2013;39(8): 9703-9707.
[48] LI X, WANG Y, ZHANG B, et al. The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties. Comput Methods Programs Biomed. 2022;225:107059.
[49] LV X, WANG S, XU Z, et al. Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials. Biomimetics (Basel, Switzerland). 2023; 8(2):166.
[50] HU X, CHEN J, YANG S, et al. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair. Small (Weinheim an der Bergstrasse, Germany). 2024;20(40):e2403681.
[51] ZHAO XN, FAN Q, CHEN XY, et al. One-step preparation of functionally hierarchical and structurally hierarchical biomimetic bioceramics composed of porous hydroxyapatite and carbon fiber reinforced hydroxyapatite composites. Mater Chem Phys. 2022;283. doi:10.1016/j.matchemphys.2022.126012.
[52] LIU X, MIAO Y, LIANG H, et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface in vivo. Bioact Mater. 2022;12:120-132.
[53] WANG Y H, XIE C N, ZHANG Z M, et al. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS Appl Mater Interfaces. 2022;14(16): 29506-29520.
[54] FENG BS, ZHANG M, QIN C, et al. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth. Bioact Mater. 2023;22:127-140.
[55] HAN X, SUN M, CHEN B, et al. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater. 2021;6(6):1639-1652.
[56] LIAN M, SUN B, HAN Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 2021; 274:120841.
[57] YANG Z, XUE J, LI T, et al. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds. Biofabrication.2022;14(3):035009.
[58] WANG Y, WANG Z, YU X, et al. 3D-Printing of succulent plant-like scaffolds with beneficial cell microenvironments for bone regeneration. J Mater Chem B. 2023; 11(24):5523-5536.
[59] CHEN QH, ZOU B, LAI QG, et al. 3D printing and osteogenesis of loofah-like hydroxyapatite bone scaffolds. Ceram Int. 2021;47(14):20352-20361.
[60] 景卓荦.3D打印多功能生物活性陶瓷支架研究[D].杭州:杭州电子科技大学, 2023.
[61] 王文晓.面向骨组织工程的PLA/HA/Mg复合支架3D成形及其性能研究[D].青岛:青岛大学,2023.
[62] GAN JX, LI ZK, XIONG JY, et al. Fabrication, physicochemical properties, and cytocompatibility of 3D-printed Sr<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub> bioceramic scaffolds calcined at different temperature for bone repair. J Eur Ceram Soc. 2025;45(1):116856.
[63] FITZPATRICK V, MARTíN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 2021; 276:120995.
[64] WU HD, CHAO L, YI YJ, et al. Design and 3D printing of integrated bionic porous ceramic maxillofacial prosthesis. J Mater Sci. 2022;57(43):20366-20379.
[65] PENG WM, LIU YF, JIANG XF, et al. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. J Zhejiang Univ Sci B. 2019; 20(8):647-659.
[66] 汪焰恩,魏庆华,张娟,等.可发育陶瓷仿生骨精确制造技术及应用[R].西安:西北工业大学,2021.
[67] CHEN X, HAN S, WU W, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small Adv Healthcare Mater. 2022;18(36):2106824.
[68] GHAREHDAGHI N, NOKHBATOLFOGHAHAEI H, KHOJASTEH A. 4D printing of smart scaffolds for bone regeneration: a systematic review. Biomed Mater. 2025;20(1):012003. |