中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (18): 4737-4748.doi: 10.12307/2026.751

• 组织构建综述 tissue construction review • 上一篇    下一篇

运动调控自噬在不同生理系统中的作用机制

张树立1,侯超文1,袁珊珊2,马玉华3   

  1. 1齐鲁理工学院,山东省济南市  250200;2滨州市全民健身服务中心,山东省滨州市  256600;3山东体育学院运动休闲学院,山东省济南市  250102


  • 收稿日期:2025-08-14 接受日期:2025-09-19 出版日期:2026-06-28 发布日期:2025-12-08
  • 通讯作者: 马玉华,博士,教授,山东体育学院运动休闲学院,山东省济南市 250102
  • 作者简介:张树立,男,1994年生,山东省济南市人,硕士,讲师,主要从事体育教学和运动损伤康复方面的研究。
  • 基金资助:
    山东省社会科学规划研究项目(17CTYJ04),项目负责人:马玉华

Mechanism by which exercise regulates autophagy in different physiological systems

Zhang Shuli1, Hou Chaowen1, Yuan Shanshan2, Ma Yuhua3    

  1. 1Qilu Insitute of Technology, Jinan 250200, Shandong Province, China; 2Binzhou Public Fitness Service Center, Binzhou 256600, Shandong Province, China; 3Sports and Leisure College, Shandong Sport University, Jinan 250102, Shandong Province, China  
  • Received:2025-08-14 Accepted:2025-09-19 Online:2026-06-28 Published:2025-12-08
  • Contact: Ma Yuhua, MD, Professor, Sports and Leisure College, Shandong Sport University, Jinan 250102, Shandong Province, China
  • About author:Zhang Shuli, MS, Lecturer, Qilu Insitute of Technology, Jinan 250200, Shandong Province, China
  • Supported by:
    Shandong Province Social Science Planning and Research Project, No. 17CTYJ04 (to MYH)

摘要:



文题释义:
运动诱导自噬:指机体在运动刺激下(如耐力训练、抗阻训练等)通过能量应激(腺苷一磷酸/腺苷三磷酸比值升高)、氧化应激(低水平活性氧)及机械应力等信号激活自噬相关分子通路,促进自噬体形成与功能的过程。
胰岛素样生长因子1/雷帕霉素靶蛋白信号轴:由腺苷/磷酸依赖的蛋白激酶(腺苷酸活化蛋白激酶)和哺乳动物雷帕霉素靶蛋白组成的信号通路,是文章中运动调控自噬的核心分子开关。腺苷酸活化蛋白激酶作为能量传感器,在运动导致腺苷三磷酸下降时被激活,通过磷酸化自噬启动激酶1的丝氨酸555位点(活性提升1.8倍)并抑制雷帕霉素靶蛋白复合物1,启动自噬;雷帕霉素靶蛋白复合物1则整合营养信号,静息时通过磷酸化自噬启动激酶1丝氨酸757位点抑制自噬。

背景:研究发现,运动能通过多个层面信号通路调节自噬,在维持细胞稳态、改善代谢、延缓衰老以及预防疾病等方面都起到关键作用。
目的:系统整合运动调控自噬的分子机制,分析它们在不同生理系统中的病理生理作用。
方法:通过检索Web of Science、PubMed、中国知网、万方、维普数据库中的相关文献,中文检索词为“运动,线粒体自噬,自噬,AMPK/mTOR 通路,氧化应激,Nrf2/Beclin1 通路,LC3,ULK1,Beclin1,p62”,英文检索词为“Exercise,Autophagy,Mitophagy,Lipophagy,AMPK/mTOR pathway,Oxidative stress,Nrf2/Beclin1 pathway,LC3,ULK1,Beclin1,p62”,根据纳入及排除标准筛选后,对 92篇高质量文献进行系统性综述,聚焦分子机制及多系统作用。
结果与结论:运动通过腺苷酸活化蛋白激酶磷酸化Unc-51样激酶1、抑制雷帕霉素靶蛋白复合物1激活自噬,并依赖贝克林1-Ⅲ型磷脂酰肌醇-3-羟激酶复合物促进自噬体成核过程,调节微管相关蛋白轻链3脂化与自噬相关基因5-自噬相关基因12复合物介导自噬体延伸。氧化应激通过核因子E2相关因子2-自噬相关基因1通路形成“抗氧化-自噬”调控网络,促进线粒体自噬过程,从而清除受损的细胞器。运动通过自噬途径降解肝脏多余的脂质,线粒体自噬增强胰岛素敏感性,从而减轻非酒精性脂肪肝及糖尿病疾病的进展。线粒体自噬清除缺血性心肌损伤细胞内功能失调的线粒体,抑制心肌细胞凋亡,改善心力衰竭及动脉粥样硬化等病理状态。自噬清除阿尔茨海默病相关β-淀粉样蛋白及帕金森病相关α-突触核蛋白,通过提高神经元活性和突触可塑性延缓神经退行性疾病的进展。抗阻运动通过调控胰岛素样生长因子1/雷帕霉素靶蛋白 通路平衡蛋白质降解,促进肌肉修复;自噬可通过激活Wnt/β-连环蛋白信号通路增强成骨细胞分化能力,维持骨骼稳态。运动通过多层次分子网络调节自噬,在多种生理系统中发挥适应性重塑作用。虽然已有大量研究揭示了运动与自噬的关系,但时空特异性作用机制及不同运动模式的精准调控机制仍需进一步研究。

https://orcid.org/0009-0005-5430-299X(张树立);https://orcid.org/0009-0000-7619-3898(马玉华)


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 运动, 自噬, 胰岛素样生长因子1/雷帕霉素靶蛋白, 氧化应激, 分子机制

Abstract: BACKGROUND: Studies have shown that exercise can regulate autophagy through multiple signaling pathways, playing a crucial role in maintaining cellular homeostasis, improving metabolism, delaying aging, and preventing diseases.
OBJECTIVE: To systematically review the molecular mechanism by which exercise regulates autophagy and to analyze its pathophysiological roles in different physiological systems. 
METHODS: An online search of the Web of Science, PubMed, CNKI, Wanfang, and VIP databases was conducted to retrieve relevant literature. The Chinese search terms included “exercise, mitophagy, AMPK/mTOR pathway, oxidative stress, Nrf2/Beclin1 pathway, LC3, ULK1, Beclin1, p62,” while the English search terms included “exercise, autophagy, mitophagy, lipophagy, AMPK/mTOR pathway, oxidative stress, Nrf2/Beclin1 pathway, LC3, ULK1, Beclin1, p62.” Based on the inclusion and exclusion criteria, 92 high-quality documents focusing on molecular mechanisms and multi-system effects were included in this systematic review. 
RESULTS AND CONCLUSION: Exercise phosphorylates Unc-51-like kinase 1 through AMP-activated protein kinase, inhibits the activation of mammalian target of rapamycin complex 1 involved in autophagy initiation. This process relies on Beclin1-III phosphatidylinositol 3-kinase complex to promote the nucleation of autophagosomes, regulate the lipidation of microtubule-associated protein light chain 3, and Atg5-Atg12 complex mediated extension of autophagosomes. Oxidative stress forms an “antioxidant-autophagy” regulatory network through the Nrf2 Beclin1 pathway, promoting mitophagy to eliminate damaged organelles. Exercise degrades excess lipids in the liver via autophagy, while mitophagy enhances insulin sensitivity, thereby alleviating the progression of non-alcoholic fatty liver disease and diabetes. Mitophagy removes dysfunctional mitochondria from ischemic myocardial injury, inhibiting cardiomyocyte apoptosis and improving pathological conditions such as heart failure and atherosclerosis. Autophagy also clears amyloid-β protein plaques associated with Alzheimer’s disease and α - synuclein associated with Parkinson’s disease, delaying the progression of neurodegenerative diseases by enhancing neuronal activity and synaptic plasticity. Resistance exercise balances protein degradation through the insulin-like growth factor 1/mammalian target of rapamycin pathway, promoting muscle repair. Furthermore, autophagy can enhance the differentiation capacity of osteoblasts by activating the Wnt/β-catenin signaling pathway, thereby maintaining skeletal homeostasis. Exercise regulates autophagy through a multi-layered molecular network and exerts adaptive remodeling effects in various physiological systems. Although numerous studies have revealed the relationship between exercise and autophagy, the spatiotemporal specificity and precise regulatory mechanisms of different exercise modalities still require further investigation.


Key words: exercise, autophagy, insulin-like growth factor 1/mammalian target of rapamycin, oxidative stress, molecular mechanism

中图分类号: