[1] RAAS C, HOFMANN-FLIRI L, HÖRMANN R, et al. Prophylactic augmentation of the proximal femur: an investigation of two techniques. Arch Orthop Trauma Surg. 2016;136(3):345-351.
[2] CHO HM, CHOI SM, PARK JY, et al. A finite element analysis and cyclic load experiment on an additional transcortical-type hole formed around the proximal femoral nail system’s distal locking screw. BMC Musculoskelet Disord. 2022;23(1):92.
[3] KOVALAK E, ERMUTLU C, ATAY T, et al. Management of unstable pertrochanteric fractures with proximal femoral locking compression plates and affect of neck-shaft angle on functional outcomes. J Clin Orthop Trauma. 2017;8(3):209-214.
[4] LI S, SU Z, ZHU J, et al. The importance of the thickness of femoral lateral wall for treating intertrochanteric fractures: a finite elements analysis. Sci Rep. 2023;13(1):12679.
[5] SHEEHAN KJ, SOBOLEV B, GUY P. Mortality by Timing of Hip Fracture Surgery: Factors and Relationships at Play. J Bone Joint Surg Am. 2017;99(20):e106.
[6] KIM J, OH C, KIM B, et al. Structure-mechanical analysis of various fixation constructs for basicervical fractures of the proximal femur and clinical implications; finite element analysis. Injury. 2023;54(2): 370-378.
[7] GOMEZ-VALLEJO J, BLANCO-RUBIO N, LORENZO-LOPEZ R, et al. Outcomes of basicervical femoral neck fracture treated with percutaneous compression plate (PCCP). Injury. 2021;52S42-S46.
[8] CHEN Y, LI H, DAI L, et al. Imaging observation of percutaneous compression plate use in promoting femoral neck fracture healing. J Int Med Res. 2021;49(8):030006052110335.
[9] ZHU J, LI Y, ZHANG Y, et al. Clinical Outcome and Biomechanical Analysis of Dynamic Hip Screw Combined with Derotation Screw in Treating Displaced Femoral Neck Fractures Based on Different Reduction Qualities in Young Patients (≤65 Years of Age). Biomed Res Int. 2022; 2022:9505667.
[10] DING K, ZHU Y, WANG H, et al. A comparative Study of Novel Extramedullary Fixation and Dynamic Hip Screw in the Fixation of Intertrochanteric Fracture: A Finite-Element Analysis. Front Surg. 2022;9:911141.
[11] 恽常军, 钱文杰, 张杰, 等. 肱骨近端锁定接骨板固定治疗Vancouver B1型股骨假体周围骨折生物力学特性的有限元分析[J]. 中华创伤骨科杂志,2021,23(9):798-803.
[12] 艾克白尔·吐逊, 阿吉木·克热木, 谢增如, 等. 两种内固定方式固定青壮年不稳定型股骨颈骨折生物力学特性的有限元分析[J]. 中华创伤骨科杂志,2020,22(9):793-798.
[13] SUN H, ZHANG H, WANG T, et al. Biomechanical and Finite-Element Analysis of Femoral Pin-Site Fractures Following Navigation-Assisted Total Knee Arthroplasty. J Bone Joint Surg Am. 2022;104(19):1738-1749.
[14] LI J, WANG M, LI L, et al. Finite element analysis of different configurations of fully threaded cannulated screw in the treatment of unstable femoral neck fractures. J Orthop Surg Res. 2018;13(1):272.
[15] GARDNER MP, CHONG ACM, POLLOCK AG, et al. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng. 2010;38(3):613-620.
[16] HEINER AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech. 2008;41(15):3282-3284.
[17] MA L, ZHOU Y, ZHANG Y, et al. Biomechanical evaluation with finite element analysis of the reconstruction of femoral tumor defects by using a double-barrel free vascularized fibular graft combined with a locking plate. Int J Clin Exp Med. 2014;7(9):2425-2434.
[18] CHANG C, CHEN Y, LI C, et al. Role of the compression screw in the dynamic hip–screw system: A finite-element study. Medical Engineering & Physics. 2015;37(12):1174-1179.
[19] ME T, KE T, MAR F, et al. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys. 1996;18(2):122-131.
[20] CUI Y, XING W, PAN Z, et al. Characterization of novel intramedullary nailing method for treating femoral shaft fracture through finite element analysis. Exp Ther Med. 2020;20(2):748-753.
[21] WANG J, MA J, LU B, et al. Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthop Traumatol Surg Res. 2020;106(1):95-101.
[22] 张睿, 罗鹏, 胡炜, 等. 新型股骨近端内侧支撑钢板治疗股骨反转子间骨折的生物力学研究[J]. 中国修复重建外科杂志,2017,31(2): 165-170.
[23] WANG Y, CHEN W, ZHANG L, et al. Finite Element Analysis of Proximal Femur Bionic Nail (PFBN) Compared with Proximal Femoral Nail Antirotation and InterTan in Treatment of Intertrochanteric Fractures. Orthop Surg. 2022;14(9):2245-2255.
[24] NAVARRO M, MICHIARDI A, CASTA OO, et al. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137-1158.
[25] CHEUNG CL, ANG SB, CHADHA M, et al. An updated hip fracture projection in Asia: The Asian Federation of Osteoporosis Societies study. Osteoporos Sarcopenia. 2018;4(1):16-21.
[26] HELWIG P, FAUST G, HINDENLANG U, et al. Finite element analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture. Injury. 2009;40(3):288-295.
[27] KWAK DK, KIM WH, LEE SJ, et al. Biomechanical Comparison of Three Different Intramedullary Nails for Fixation of Unstable Basicervical Intertrochanteric Fractures of the Proximal Femur: Experimental Studies. Biomed Res Int. 2018;2018:7618079.
[28] PAPINI M, ZDERO R, SCHEMITSCH EH, et al. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng. 2007;129(1):12-19.
[29] HEINER AD, BROWN TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001;34:773-781.
[30] CRISTOFOLINI L, VICECONTI M, CAPPELLO A, et al. Mechanical validation of whole bone composite femur model. J Biomech. 1996; 29(4):525-535.
[31] WANG H, YANG W, DING K, et al. Biomechanical study on the stability and strain conduction of intertrochanteric fracture fixed with proximal femoral nail antirotation versus triangular supporting intramedullary nail. Int Orthop. 2021;46(2):341-350.
[32] BRANDT SE, LEFEVER S, JANZING HMJ, et al. Percutaneous compression plating (PCCP) versus the dynamic hip screw for pertrochanteric hip fractures: preliminary results. Injury. 2002;33:413-428.
[33] KRISCHAK GD, AUGAT P, BECK A, et al. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. Clin Biomech. 2007;22(10):1112-1118.
[34] 张凯瑞. 动力髋螺钉与经皮加压钢板固定股骨转子间骨折的三维有限元分析[D]. 广州:南方医科大学,2009.
[35] SOYLEMEZ M, OZKAN K, T RKMEN I, et al. A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation A study on synthetic bones. Indian J Orthop. 2015;49(3):347.
[36] IBRAHIM S, MELEPPURAM JJ. A retrospective analysis of surgically-treated complex proximal femur fractures with proximal femoral locking compression plate. Rev Bras Ortop. 2017;52(6):644-650.
[37] GAO Z, WANG M, SHEN B, et al. Treatment of Pauwels type III femoral neck fracture with medial femoral neck support screw: a biomechanical and clinical study. Sci Rep. 2021;11(1):21418.
[38] RAINA DB, MARKEVICIUTE V, STRAVINSKAS M, et al. A New Augmentation Method for Improved Screw Fixation in Fragile Bone. Front Bioeng Biotechnol. 2022;10:816250.
[39] ZENG W, LIU Y, HOU X. Biomechanical evaluation of internal fixation implants for femoral neck fractures: A comparative finite element analysis. Comput Meth Prog Bio. 2020;196:105714.
[40] NODA M, NAKAMURA Y, ADACHI K, et al. Dynamic finite element analysis of implants for femoral neck fractures simulating walking. J Orthop Surg Res. 2018;26(2):230949901877789.
|