[1] ZHANG M, HU W, CAI C, et al. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio. 2022;14:100223.
[2] KRYCH AJ, SARIS DBF, STUART MJ, et al. Cartilage Injury in the Knee: Assessment and Treatment Options. J Am Acad Orthop Surg. 2020;28(22): 914-922.
[3] CHEN Y, WANG X, TAO S, et al. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res. 2023;10(1):37.
[4] LEI Y, WANG Y, SHEN J, et al. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci Adv. 2022;8(5): eabl6449.
[5] ZHOU C, WANG C, XU K, et al. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact Mater. 2022;25:615-628.
[6] CARDONEANU A, MACOVEI LA, BURLUI AM, et al. Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci. 2022;24(1):171.
[7] DING SL, ZHAO XY, XIONG W, et al. Cartilage Lacuna-Inspired Microcarriers Drive Hyaline Neocartilage Regeneration. Adv Mater. 2023;35(30):e2212114.
[8] UZIELIENE I, BIRONAITE D, PACHALEVA J, et al. Chondroitin Sulfate-Tyramine-Based Hydrogels for Cartilage Tissue Repair. Int J Mol Sci. 2023;24(4):3451.
[9] LEI J, YAN S, ZHOU Y, et al. Abnormal expression of chondroitin sulfate sulfotransferases in the articular cartilage of pediatric patients with Kashin-Beck disease. Histochem Cell Biol. 2020;153(3):153-164.
[10] KILMER CE, WALIMBE T, PANITCH A, et al. Incorporation of a Collagen-Binding Chondroitin Sulfate Molecule to a Collagen Type I and II Blend Hydrogel for Cartilage Tissue Engineering. ACS Biomater Sci Eng. 2022;8(3): 1247-1257.
[11] AO Y, TANG W, TAN H, et al. Hydrogel composed of type II collagen, chondroitin sulfate and hyaluronic acid for cartilage tissue engineering. Biomed Mater Eng. 2022;33(6):515-523.
[12] HEYDARI M, ZARE M, BADIE MR, et al. Crocin as a vision supplement. Clin Exp Optom. 2023;106(3):249-256.
[13] BAKSHI HA, QUINN GA, NASEF MM, et al. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-alpha/NF-kB/VEGF Pathways. Cells. 2022;11(9):1502.
[14] TAO W, RUAN J, WU R, et al. A natural carotenoid crocin exerts antidepressant action by promoting adult hippocampal neurogenesis through Wnt/beta-catenin signaling. J Adv Res. 2023;43:219-231.
[15] HOSSEINI SS, NAZIFI P, AMINI M, et al. Crocin Suppresses Colorectal Cancer Cell Proliferation by Regulating miR-143/145 and KRAS/RREB1 Pathways. Anticancer Agents Med Chem. 2023;23(17):1916-1923.
[16] 邓新超,钱亮,邹曼.藏红花素调节Hippo-YAP信号通路抑制膝骨关节炎大鼠软骨细胞凋亡[J].中国骨质疏松杂志,2023,29(4):538-543,598.
[17] POURSAMIMI J, SHARIATI-SARABI Z, TAVAKKOL-AFSHARI J, et al. A Significant Increase in the Gene Expression of GATA-3 Following the Treatment of Osteoarthritis Patients with Crocin. Iran J Allergy Asthma Immunol. 2022;21(1):35-43.
[18] VAFAEI S, WU X, TU J, et al. The Effects of Crocin on Bone and Cartilage Diseases.Front Pharmacol. 2022;12:830331.
[19] REKABI A, RAM A, NAZARI A, et al. Does crocin create new hope for the treatment of oral problems? A focus on periodontitis. Mol Biol Rep. 2024; 51(1):224.
[20] AMIRBEKYAN KY, SHAHINYAN GA, GHAZOYAN HH, et al. Fluorescence anisotropy studies on the Hoechst 33258-DNA interaction: the solvent effect. J Biomol Struct Dyn. 2021;39(13):4902-4906.
[21] BOOS MA, GRINSTAFF MW, LAMANDÉ SR, et al. Contrast-Enhanced Micro-Computed Tomography for 3D Visualization and Quantification of Glycosaminoglycans in Different Cartilage Types .Cartilage. 2021;13(2_suppl): 486S-494S.
[22] YAMASHITA A, TSUMAKI N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ. 2021;63(1):72-81.
[23] ZHANG FX, LIU P, DING W, et al. Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials. 2021;278:121169.
[24] LI Q, YU H, ZHAO F, et al. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. Adv Sci (Weinh). 2023; 10(26):e2303650.
[25] COMAS B, RIZZA LS, RUSECKAITE RA, et al. Schiff base crosslinked gelatin-Spirulina platensis protein concentrate films with enhanced antioxidant activity. J Food Sci. 2023;88(3):1075-1088.
[26] QIN Z, HUANG Y, XIAO S, et al. Preparation and Characterization of High Mechanical Strength Chitosan/Oxidized Tannic Acid Composite Film with Schiff Base and Hydrogen Bond Crosslinking.Int J Mol Sci. 2022;23(16):9284.
[27] LEI Y, PENG J, DAI Z, et al. Articular Cartilage Fragmentation Improves Chondrocyte Migration by Upregulating Membrane Type 1 Matrix Metalloprotease. Cartilage. 2021;13(2_suppl):1054S-1063S.
[28] SONG H, PARK KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12-23.
[29] HASEEB A, KC R, ANGELOZZI M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A. 2021;118(8):e2019152118.
[30] BAY-JENSEN AC, MOBASHERI A, THUDIUM CS, et al. Blood and urine biomarkers in osteoarthritis - an update on cartilage associated type II collagen and aggrecan markers. Curr Opin Rheumatol. 2022;34(1):54-60.
[31] HAN G, BOZ U, ERITEN M, et al. Glycosaminoglycan depletion increases energy dissipation in articular cartilage under high-frequency loading. J Mech Behav Biomed Mater. 2020;110:103876.
[32] HU G, YU Y, SHARMA D, et al. Glutathione limits RUNX2 oxidation and degradation to regulate bone formation. JCI Insight. 2023;8(16):e166888.
[33] SAHIN E, ORHAN C, BALCI TA, et al. Magnesium Picolinate Improves Bone Formation by Regulation of RANK/RANKL/OPG and BMP-2/Runx2 Signaling Pathways in High-Fat Fed Rats. Nutrients. 2021;13(10):3353.
[34] NALESSO G, SHERWOOD J, BERTRAND J, et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol. 2011;193(3):551-564.
[35] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56.
[36] HOUSMANS BAC, VAN DEN AKKER GGH, NEEFJES M, et al. Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes. Osteoarthritis Cartilage. 2023;31(1):60-71.
|