[1] LYNAM EC, XIE Y, DAWSON R, et al. Severe hypoxia and malnutrition collectively contribute to scar fibroblast inhibition and cell apoptosis. Wound Repair Regen. 2015;23(5):664-671.
[2] FENG Y, WU JJ, SUN ZL, et al. Targeted apoptosis of myofibroblasts by elesclomol inhibits hypertrophic scar formation. EBioMedicine. 2020;54:102715.
[3] CHEN H, XU K, SUN C, et al. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway. An Bras Dermatol. 2023;98(1):26-35.
[4] ZHANG J, SONG F, WANG XQ. Role of autosis of fibroblasts in Hyper tropic Scar regression. J Shanghai Jiaotong Univ (Sci). 2022;42(1):44-50.
[5] LEVINE B, KROEMER G. Biological Functions of Autophagy Genes:A Disease Perspective. Cell. 2019;176(1-2):11-42.
[6] CHEN D, LI Q, ZHANG H, et al. Traditional Chinese medicine for hypertrophic scars-A review of the therapeutic methods and potential effects. Front Pharmacol. 2022;13:1025602.
[7] 左俊,马少林.β-谷甾醇对增生性瘢痕成纤维细胞作用机制的网络药理学分析[J].中国组织工程研究,2024,28(2):216-223.
[8] KHAN Z, NATH N, RAUF A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: emerging evidence toward clinical applications. Chem Biol Interact. 2022;365:110117.
[9] PANPIPAT W, CHAIJAN M, GUO Z. Oxidative stability of margarine enriched with different structures of β-sitosteryl esters during storage. Food Biosci. 2018;22:78-84.
[10] JIA C, XIA X, WANG H, et al. Preparation of phytosteryl ornithine ester hydrochlo- ride and improvement of its bioaccessibility and cholesterol-reducing activity in vitro. Food Chem. 2020;331:127200.
[11] MOHAMMADI M, JAFARI SM, HAMISHE- HKAR H, et al. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol. 2020;101:73-88.
[12] ZHU W, DONG Y, XU P, et al. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022;154:212-230.
[13] KASIRZADEH S, GHAHREMANI MH, SETAYESH N, et al. β-sitosterol alters the inflammatory response in CLP rat model of sepsis by modulation of NFκB signaling. Biomed Res Int. 2021;2021:5535562.
[14] HJELLESTAD M, STRAND LI, EIDE GE, et al. Clinimetric properties of a. translated and culturally adapted Norwegian version of the Patient and Observer Scar Assessment Scale for use in clinical practice and research. Burns. 2021;47(4):953-960.
[15] MENASHE S, HELLER L. Keloid and Hypertrophic Scars Treatment. Aesthetic Plast Surg. 2024;48(13):2553-2560.
[16] WANG H, WANG Z, ZHANG Z, et al. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention. and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr. 2023;14(5): 1085-1110.
[17] KHAN Z, NATH N, RAUF A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact. 2022;365:110117.
[18] OKAGU OD, ABIOYE RO, UDENIGWE CC. Molecular Interaction of Pea Glutelin and Lipophilic Bioactive Compounds: Structure-Binding Relationship and Nano-/Microcomplexation. J Agric Food Chem. 2023;71(12):4957-4969.
[19] SHISHIR MRI, XIE LH, SUN CD, et al. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol. 2018;78: 34-60.
[20] YUE X, CHEN X, LI H, et al. Nano Ag/Co3O4 Catalyzed Rapid Decomposition of Robinia pseudoacacia Bark for Production Biofuels and Biochemicals. Polymers (Basel). 2022;15(1):114.
[21] LI D, SONG C, ZHANG J, et al.Targeted delivery and apoptosis induction activity of peptide-transferrin targeted mesoporous silica encapsulated resveratrol in MCF-7 cells. J Pharm Pharmacol. 2023;75(1):49-56.
[22] LIN M, YAO W, XIAO Y, et al. Resveratrol-modified mesoporous silica nanoparticle for tumor-targeted therapy of gastric cancer. Bioengineered. 2021;12(1):6343-6353.
[23] DONG J, CHEN F, YAO Y, et al. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials. 2024;305:122465.
[24] ZHOU S, WANG W, ZHOU S, et al. A Novel Model for Cutaneous Wound Healing and Scarring in the Rat. Plast Reconstr Surg. 2019;143(2): 468-477.
[25] LI M, WANG P, LI J, et al. NRP1 transduces mechanical stress inhibition via LATS1/YAP in hypertrophic scars. Cell Death Discov. 2023;9(1):341.
[26] WANG P, PENG Z, YU L, et al. Verteporfin-Loaded Bioadhesive Nanoparticles for the Prevention of Hypertrophic Scar. Small Methods. 2024;8(8):e2301295.
[27] RAMOS ML, GRAGNANI A, FERREIRA LM. Is there an ideal animal model to study hypertrophic scarring. J Burn Care Res. 2008;29:363-368.
[28] BARONE N, SAFRAN T, VORSTENBOSCH J, et al. Current Advances in Hypertrophic Scar and Keloid Management. Semin Plast Surg. 2021;35(3):145-152.
[29] LI Q, ZHANG B, LU J, et al. SNHG1 functions as a ceRNA in hypertrophic scar fibroblast proliferation and apoptosis through miR-320b/CTNNB1 axis. Arch Dermatol Res. 2023;315(6):1593-1601.
[30] SHI J, XIAO H, LI J, et al. Wild-type p53-modulated autophagy and autophagic fibroblast apoptosis inhibit hypertrophic scar formation. Lab Invest. 2018;98(11):1423-1437.
[31] YU Z, LI Y, FU R, et al. Platycodin D inhibits the proliferation and migration of hypertrophic scar-derived fibroblasts and promotes apoptosis through a caspase-dependent pathway. Arch Dermatol Res. 2023;315(5):1257-1267.
[32] LU H, JIA C, WU D, et al. Fibroblast growth factor 21 alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis. 2021;12(10):865.
[33] DONG Y, CAO X, HUANG J, et al. Melatonin inhibits fibroblast cell functions and hypertrophic scar formation by enhancing autophagy through the MT2 receptor-inhibited PI3K/Akt /mTOR signaling. Biochim Biophys Acta Mol Basis Dis. 2024;1870(1):166887.
[34] CHEN H, XU K, SUN C, et al. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway. An Bras Dermatol. 2023;98(1):26-35.
[35] ZHOU L, LIU Z, CHEN S, et al. Transcription factor EBmediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagydependent secretion. Int J Mol Med. 2021;47(2):547-560.
[36] DENG X, ZHAO F, ZHAO D, et al. Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition. Int Wound J. 2022; 19(5):1221-1231.
[37] XU X, JIANG R, CHEN M, et al. Puerarin decreases collagen secretion in angII-induced atrial fibroblasts through inhibiting autophagy via the JNK–Akt–mTOR signaling pathway. J Cardiovasc Pharmacol. 2019; 73(6):373-382.
[38] MATEI AE, CHEN CW, KIESEWETTER L, et al. Vascularised human skin equivalents as a novel in vitro model of skin fibrosis and platform for testing of antifibrotic drugs. Ann Rheum Dis. 2019;78(12):1686-1692.
[39] LI Y, XIAO Y, HAN Y, et al. Blocking the MIR155HG/miR-155 axis reduces CTGF-induced inflammatory cytokine production and α-SMA expression via upregulating AZGP1 in hypertrophic scar fibroblasts. Cell Signal. 2024;120:111202.
[40] DONG Y, CAO X, HUANG J, et al. Melatonin inhibits fibroblast cell functions and hypertrophic scar formation by enhancing autophagy through the MT2 receptor-inhibited PI3K/Akt /mTOR signaling. Biochim Biophys Acta Mol Basis Dis. 2024;1870(1):166887.
[41] YAN M, XIE Y, YAO J, et al. The Dual-Mode Transition of Myofibroblasts Derived from Hepatic Stellate Cells in Liver Fibrosis. Int J Mol Sci. 2023;24(20):15460.
[42] SAMPAIO LP, HILGERT GSL, SHIJU TM, et al. Topical Losartan and Corticosteroid Additively Inhibit Corneal Stromal Myofibroblast Generation and Scarring Fibrosis After Alkali Burn Injury. Transl Vis Sci Technol. 2022;11(7):9.
[43] DING H, CHEN J, QIN J, et al. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol Med. 2021;27(1):22.
[44] LI M, SU Y, GAO X, et al. Transition of autophagy and apoptosis in fibroblasts depends on dominant expRession of HIF-1α or p53. J Zhejiang Univ Sci B. 2022;23(3):204-217.
[45] ZUO J, MA S. Resveratrol-laden mesoporous silica nanoparticles regulate the autophagy and apoptosis via ROS-mediated p38-MAPK/HIF-1a /p53 signaling in hypertrophic scar fibroblasts. Heliyon. 2024; 10(4):e24985.
|